Sobolev spaces for singular perturbation of 2D Laplace operator

IF 1.3 2区 数学 Q1 MATHEMATICS
Vladimir Georgiev , Mario Rastrelli
{"title":"Sobolev spaces for singular perturbation of 2D Laplace operator","authors":"Vladimir Georgiev ,&nbsp;Mario Rastrelli","doi":"10.1016/j.na.2024.113710","DOIUrl":null,"url":null,"abstract":"<div><div>We study the perturbed Sobolev space <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>α</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>r</mi></mrow></msubsup></math></span>, <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> associated with singular perturbation <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> of Laplace operator in Euclidean space of dimension <span><math><mrow><mn>2</mn><mo>.</mo></mrow></math></span> The main results give the possibility to extend the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> theory of perturbed Sobolev space to the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> case. When <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span> we have appropriate representation of the functions in <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>α</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>r</mi></mrow></msubsup></math></span> in regular and singular part. An application to local well-posedness of the NLS associated with this singular perturbation in the mass critical and mass supercritical cases is established too.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113710"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002293","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the perturbed Sobolev space Hα1,r, r(1,), associated with singular perturbation Δα of Laplace operator in Euclidean space of dimension 2. The main results give the possibility to extend the L2 theory of perturbed Sobolev space to the Lr case. When r(2,) we have appropriate representation of the functions in Hα1,r in regular and singular part. An application to local well-posedness of the NLS associated with this singular perturbation in the mass critical and mass supercritical cases is established too.
二维拉普拉斯算子奇异扰动的索波列夫空间
我们研究了扰动索波列夫空间 Hα1,r, r∈(1,∞),它与 2 维欧几里得空间中拉普拉斯算子的奇异扰动 Δα 相关联。主要结果提供了将扰动索波列夫空间的 L2 理论扩展到 Lr 情况的可能性。当 r∈(2,∞)时,我们在 Hα1,r 中得到了函数在规则和奇异部分的适当表示。在质量临界和质量超临界情况下,我们还建立了与这种奇异扰动相关的 NLS 的局部良好拟合应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信