Regularization estimates of the Landau–Coulomb diffusion

IF 1.3 2区 数学 Q1 MATHEMATICS
Rene Cabrera , Maria Pia Gualdani , Nestor Guillen
{"title":"Regularization estimates of the Landau–Coulomb diffusion","authors":"Rene Cabrera ,&nbsp;Maria Pia Gualdani ,&nbsp;Nestor Guillen","doi":"10.1016/j.na.2024.113695","DOIUrl":null,"url":null,"abstract":"<div><div>The Landau–Coulomb equation is an important model in plasma physics featuring both nonlinear diffusion and reaction terms. In this manuscript we focus on the diffusion operator within the equation by dropping the potentially nefarious reaction term altogether. We show that the diffusion operator in the Landau–Coulomb equation provides a much stronger <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></mrow></math></span> rate of regularization than its linear counterpart, the Laplace operator. The result is made possible by a nonlinear functional inequality of Gressman, Krieger, and Strain together with a De Giorgi iteration. This stronger regularization rate illustrates the importance of the nonlinear nature of the diffusion in the analysis of the Landau equation and raises the question of determining whether this rate also happens for the Landau–Coulomb equation itself.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113695"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002141","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Landau–Coulomb equation is an important model in plasma physics featuring both nonlinear diffusion and reaction terms. In this manuscript we focus on the diffusion operator within the equation by dropping the potentially nefarious reaction term altogether. We show that the diffusion operator in the Landau–Coulomb equation provides a much stronger L1L rate of regularization than its linear counterpart, the Laplace operator. The result is made possible by a nonlinear functional inequality of Gressman, Krieger, and Strain together with a De Giorgi iteration. This stronger regularization rate illustrates the importance of the nonlinear nature of the diffusion in the analysis of the Landau equation and raises the question of determining whether this rate also happens for the Landau–Coulomb equation itself.
朗道-库仑扩散的正则化估计
朗道-库仑方程是等离子体物理学中的一个重要模型,同时具有非线性扩散和反应项。在本手稿中,我们放弃了潜在的有害反应项,将重点放在方程中的扩散算子上。我们的研究表明,朗道-库仑方程中的扩散算子比其线性对应的拉普拉斯算子具有更强的 L1→L∞ 正则化率。这一结果得益于 Gressman、Krieger 和 Strain 的非线性函数不等式以及 De Giorgi 迭代。这种更强的正则化率说明了扩散的非线性性质在朗道方程分析中的重要性,并提出了确定朗道-库仑方程本身是否也会出现这种正则化率的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信