A cost-minimized two-stage three-way dynamic consensus mechanism for social network-large scale group decision-making: Utilizing K-nearest neighbors for incomplete fuzzy preference relations
IF 7.5 1区 计算机科学Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"A cost-minimized two-stage three-way dynamic consensus mechanism for social network-large scale group decision-making: Utilizing K-nearest neighbors for incomplete fuzzy preference relations","authors":"Jiaxin Zhan, Mingjie Cai","doi":"10.1016/j.eswa.2024.125705","DOIUrl":null,"url":null,"abstract":"<div><div>In the era of big data, large scale group decision-making (LSGDM) with social networks (SNs) (namely, SN-LSGDM) has become a hot topic in the field of decision science. Faced with the explosive growth of information, decision-makers (DMs) face immense challenges in processing and integrating vast amounts of data, often finding it difficult to fully comprehend all the information, leading to potentially incomplete expressions of their fuzzy preference relations (FPRs). This limitation in information processing not only affects the quality of decision-making but also increases the difficulty and cost of reaching a consensus. To overcome these challenges and enhance the efficiency and accuracy of decision-making, this paper designs a consensus model that minimizes adjustment costs in light of a dynamic trust network. Firstly, we introduce a measurement method based on <span><math><mi>K</mi></math></span>-nearest neighbor (KNN) information, which comprehensively considers the trust level of DMs and the similarity of preference relations, effectively filling in missing preference information and improving the completeness and accuracy of decision-making. In addition, an improved <span><math><mi>k</mi></math></span>-means clustering algorithm is adopted, which takes into account the mutual influences between DMs and the cost of unit adjustment. On this basis, a two-stage minimum adjustment cost consensus reaching mechanism based on three-way decision (TWD) is proposed, using comprehensive adjustment priority as the criterion for division, to achieve feedback adjustment at the individual and subgroup levels, ensuring the coordination and consistency of the decision-making plan. At the same time, an optimization model is introduced to achieve cost minimization. Through detailed case studies and comparative analysis, the feasibility and superiority of this method in practical applications have been demonstrated.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"263 ","pages":"Article 125705"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424025727","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the era of big data, large scale group decision-making (LSGDM) with social networks (SNs) (namely, SN-LSGDM) has become a hot topic in the field of decision science. Faced with the explosive growth of information, decision-makers (DMs) face immense challenges in processing and integrating vast amounts of data, often finding it difficult to fully comprehend all the information, leading to potentially incomplete expressions of their fuzzy preference relations (FPRs). This limitation in information processing not only affects the quality of decision-making but also increases the difficulty and cost of reaching a consensus. To overcome these challenges and enhance the efficiency and accuracy of decision-making, this paper designs a consensus model that minimizes adjustment costs in light of a dynamic trust network. Firstly, we introduce a measurement method based on -nearest neighbor (KNN) information, which comprehensively considers the trust level of DMs and the similarity of preference relations, effectively filling in missing preference information and improving the completeness and accuracy of decision-making. In addition, an improved -means clustering algorithm is adopted, which takes into account the mutual influences between DMs and the cost of unit adjustment. On this basis, a two-stage minimum adjustment cost consensus reaching mechanism based on three-way decision (TWD) is proposed, using comprehensive adjustment priority as the criterion for division, to achieve feedback adjustment at the individual and subgroup levels, ensuring the coordination and consistency of the decision-making plan. At the same time, an optimization model is introduced to achieve cost minimization. Through detailed case studies and comparative analysis, the feasibility and superiority of this method in practical applications have been demonstrated.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.