{"title":"An innovative practical roadmap for optimal control strategies in malware propagation through the integration of RL with MPC","authors":"Mousa Tayseer Jafar, Lu-Xing Yang, Gang Li","doi":"10.1016/j.cose.2024.104186","DOIUrl":null,"url":null,"abstract":"<div><div>While there has been considerable research into optimal control formulations for mitigating cyber threats, a significant gap persists between the theoretical and numerical insights derived from such research and the practical implementation of these optimal mitigation strategies in real-time scenarios. This paper introduces a multifaceted approach to enhance and optimize optimal control strategies by seamlessly integrating reinforcement learning (RL) algorithms with model predictive control (MPC) techniques for the purpose of malware propagation control. Optimal control is a critical aspect of various domains, ranging from industrial processes and robotics to epidemiological modeling and cybersecurity. The traditional approaches to optimal control, particularly open-loop strategies, have limitations in adapting to dynamic and uncertain environments. This paper addresses these limitations by proposing a novel roadmap that leverages RL algorithms to fine-tune and adapt MPC parameters within the context of malware propagation containment. In sum, this practical roadmap is anticipated to serve as a valuable resource for researchers and practitioners engaged in the development of cybersecurity solutions.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"148 ","pages":"Article 104186"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824004917","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
While there has been considerable research into optimal control formulations for mitigating cyber threats, a significant gap persists between the theoretical and numerical insights derived from such research and the practical implementation of these optimal mitigation strategies in real-time scenarios. This paper introduces a multifaceted approach to enhance and optimize optimal control strategies by seamlessly integrating reinforcement learning (RL) algorithms with model predictive control (MPC) techniques for the purpose of malware propagation control. Optimal control is a critical aspect of various domains, ranging from industrial processes and robotics to epidemiological modeling and cybersecurity. The traditional approaches to optimal control, particularly open-loop strategies, have limitations in adapting to dynamic and uncertain environments. This paper addresses these limitations by proposing a novel roadmap that leverages RL algorithms to fine-tune and adapt MPC parameters within the context of malware propagation containment. In sum, this practical roadmap is anticipated to serve as a valuable resource for researchers and practitioners engaged in the development of cybersecurity solutions.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.