{"title":"The dynamic of the positons for the reverse space–time nonlocal short pulse equation","authors":"Jiaqing Shan, Maohua Li","doi":"10.1016/j.physd.2024.134419","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the Darboux transformation (DT) of the reverse space–time (RST) nonlocal short pulse equation is constructed by a hodograph transformation and the eigenfunctions of its Lax pair. The multi-soliton solutions of the RST nonlocal short pulse equation are produced through the DT, which can be expressed in terms of determinant representation. The correctness of DT and determinant representation of N-soliton solutions are proven. By taking different values of eigenvalues, bounded soliton solutions and unbounded soliton solutions can be obtained. In addition, based on the degenerate Darboux transformation, the <span><math><mi>N</mi></math></span>-positon solutions of the RST nonlocal short pulse equation are computed from the determinant expression of the multi-soliton solution. The decomposition of positons, approximate trajectory and “phase shift” after collision are discussed explicitly. Furthermore, different kinds of mixed solutions are also presented, and the interaction properties between positons and solitons are investigated.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"470 ","pages":"Article 134419"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003695","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the Darboux transformation (DT) of the reverse space–time (RST) nonlocal short pulse equation is constructed by a hodograph transformation and the eigenfunctions of its Lax pair. The multi-soliton solutions of the RST nonlocal short pulse equation are produced through the DT, which can be expressed in terms of determinant representation. The correctness of DT and determinant representation of N-soliton solutions are proven. By taking different values of eigenvalues, bounded soliton solutions and unbounded soliton solutions can be obtained. In addition, based on the degenerate Darboux transformation, the -positon solutions of the RST nonlocal short pulse equation are computed from the determinant expression of the multi-soliton solution. The decomposition of positons, approximate trajectory and “phase shift” after collision are discussed explicitly. Furthermore, different kinds of mixed solutions are also presented, and the interaction properties between positons and solitons are investigated.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.