{"title":"About the chaos influence on a system with multi-frequency quasi-periodicity and the Landau-Hopf scenario","authors":"A.P. Kuznetsov, L.V. Turukina","doi":"10.1016/j.physd.2024.134425","DOIUrl":null,"url":null,"abstract":"<div><div>The interaction of system demonstrating multi-frequency quasi-periodic oscillations and several steps of the Landau-Hopf scenario with chaotic Rössler system is considered. The quasi-periodic subsystem is a network of five non-identical van der Pol oscillators. It is shown that as the coupling parameter between the subsystems decreases, successive quasi-periodic Hopf bifurcations and doublings of high-dimensional invariant tori are observed. The chaos arising in this system can have several (in our case up to five) additional zero Lyapunov exponents. In case of weak coupling parameter between chaotic and quasi-periodic subsystems, when the coupling parameter of van der Pol oscillators changes, the points at which the attractor transformation occurs are observed. This is a new type of bifurcations that are responsible for a consistent increase in the number of additional zero Lyapunov exponents. As the coupling parameter between chaotic and quasi-periodic subsystems increases, the observed stages of the Landau-Hopf scenario turns out to be resistant to interaction with the chaotic system.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"470 ","pages":"Article 134425"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003750","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction of system demonstrating multi-frequency quasi-periodic oscillations and several steps of the Landau-Hopf scenario with chaotic Rössler system is considered. The quasi-periodic subsystem is a network of five non-identical van der Pol oscillators. It is shown that as the coupling parameter between the subsystems decreases, successive quasi-periodic Hopf bifurcations and doublings of high-dimensional invariant tori are observed. The chaos arising in this system can have several (in our case up to five) additional zero Lyapunov exponents. In case of weak coupling parameter between chaotic and quasi-periodic subsystems, when the coupling parameter of van der Pol oscillators changes, the points at which the attractor transformation occurs are observed. This is a new type of bifurcations that are responsible for a consistent increase in the number of additional zero Lyapunov exponents. As the coupling parameter between chaotic and quasi-periodic subsystems increases, the observed stages of the Landau-Hopf scenario turns out to be resistant to interaction with the chaotic system.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.