Yi-Lung Huang , Jordan H. Hsieh , Wei-Cheng Wang , Yueh-Heng Li
{"title":"Investigation of discharge voltage characteristics of a lanthanum hexaboride heaterless hollow cathode","authors":"Yi-Lung Huang , Jordan H. Hsieh , Wei-Cheng Wang , Yueh-Heng Li","doi":"10.1016/j.actaastro.2024.11.018","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the discharge voltage characteristics of an argon-fed lanthanum hexaboride heaterless hollow cathode to assess the influence of flow rate, discharge current, background pressure, and applied magnetic field strength. Decreasing the flow rate from 15 to 3 sccm led to a considerable increase in discharge voltage and peak-to-peak oscillation, particularly for flow rates below 5 sccm. Subsequently, variation in discharge current was tested at 4–7 A; this test revealed that the discharge voltage decreases from 53 to 48 V as the discharge current increases, while the peak-to-peak oscillation increases by approximately 2 V with the rise in discharge current. At high background pressures (8.1 × 10<sup>−4</sup> Torr), the discharge voltage decreased by 15 V, and the peak-to-peak oscillation was maintained at 5 V. Furthermore, the spectral analysis of the discharge voltage indicated the occurrence of high-energy oscillations at 10–500 kHz owing to ionization instability. The discharge voltage decreased when the strength of an externally applied axial magnetic field increased from 0 to 118 G. Such a result can be attributed to increased ionization (caused by the applied magnetic field) in the emitter and cathode-keeper region, thereby decreasing sheath potential on the emitter surface.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 760-771"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524006659","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the discharge voltage characteristics of an argon-fed lanthanum hexaboride heaterless hollow cathode to assess the influence of flow rate, discharge current, background pressure, and applied magnetic field strength. Decreasing the flow rate from 15 to 3 sccm led to a considerable increase in discharge voltage and peak-to-peak oscillation, particularly for flow rates below 5 sccm. Subsequently, variation in discharge current was tested at 4–7 A; this test revealed that the discharge voltage decreases from 53 to 48 V as the discharge current increases, while the peak-to-peak oscillation increases by approximately 2 V with the rise in discharge current. At high background pressures (8.1 × 10−4 Torr), the discharge voltage decreased by 15 V, and the peak-to-peak oscillation was maintained at 5 V. Furthermore, the spectral analysis of the discharge voltage indicated the occurrence of high-energy oscillations at 10–500 kHz owing to ionization instability. The discharge voltage decreased when the strength of an externally applied axial magnetic field increased from 0 to 118 G. Such a result can be attributed to increased ionization (caused by the applied magnetic field) in the emitter and cathode-keeper region, thereby decreasing sheath potential on the emitter surface.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.