Anita Mongshi , Yves Armand Tene Deffo , Nicolas Mary , Pierre Tsafack , Jean-François Mogniotte , Benjamin Ducharne
{"title":"Magnetization mechanisms for non-destructive evaluation of low-carbon steels subject to early-stage low-temperature thermal oxidation","authors":"Anita Mongshi , Yves Armand Tene Deffo , Nicolas Mary , Pierre Tsafack , Jean-François Mogniotte , Benjamin Ducharne","doi":"10.1016/j.jmmm.2024.172643","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, an investigation is done to identify the magnetic non-destructive testing techniques and their related magnetization mechanisms and, eventually, the associated indicators that present the most distinguishable response to changes in steel properties due to the onset and evolution of starting corrosion by thermal oxidation at low temperatures. This is found by measuring magnetic responses of Magnetic Hysteresis Cycle (MHC), Magnetic Barkhausen Noise (MBN), and Magnetic Incremental Permeability (MIP) at the early stage of corrosion. Herein, the magnetization mechanism identified by the Domain Wall Bulging (DWB) effect and represented by the indicator Δ|Z|<sub>MIP</sub> from the MIP response is ranked the most sensitive indicator by Pearson’s linear correlation coefficient (LCC). It is immediately followed by the Domain Wall’s Irreversible Motions (DWIM) represented by the MBN coercivity indicator. Both mechanisms are associated with the structure and kinetic of the magnetic domains, respectively, under low and medium magnetic excitations. The low-temperature thermal oxidation process set out the constructive effect of the oxide layer in the strain relief effect on the overall magnetic response of the corroded specimen. Discussions and conclusions are provided, as well as perspectives regarding the applicability of magnetic non-destructive testing techniques.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"612 ","pages":"Article 172643"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030488532400934X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, an investigation is done to identify the magnetic non-destructive testing techniques and their related magnetization mechanisms and, eventually, the associated indicators that present the most distinguishable response to changes in steel properties due to the onset and evolution of starting corrosion by thermal oxidation at low temperatures. This is found by measuring magnetic responses of Magnetic Hysteresis Cycle (MHC), Magnetic Barkhausen Noise (MBN), and Magnetic Incremental Permeability (MIP) at the early stage of corrosion. Herein, the magnetization mechanism identified by the Domain Wall Bulging (DWB) effect and represented by the indicator Δ|Z|MIP from the MIP response is ranked the most sensitive indicator by Pearson’s linear correlation coefficient (LCC). It is immediately followed by the Domain Wall’s Irreversible Motions (DWIM) represented by the MBN coercivity indicator. Both mechanisms are associated with the structure and kinetic of the magnetic domains, respectively, under low and medium magnetic excitations. The low-temperature thermal oxidation process set out the constructive effect of the oxide layer in the strain relief effect on the overall magnetic response of the corroded specimen. Discussions and conclusions are provided, as well as perspectives regarding the applicability of magnetic non-destructive testing techniques.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.