Yifan Ding , Ying Lei , Anqi Wang , Xiangrun Liu , Tuanfei Zhu , Yizhou Li
{"title":"Adversarial contrastive representation training with external knowledge injection for zero-shot stance detection","authors":"Yifan Ding , Ying Lei , Anqi Wang , Xiangrun Liu , Tuanfei Zhu , Yizhou Li","doi":"10.1016/j.neucom.2024.128849","DOIUrl":null,"url":null,"abstract":"<div><div>Zero-shot stance detection (ZSSD) is a task that involves identifying the author’s perspective on specific issues in text, particularly when the target topic has not been encountered during the model training process, to address rapidly evolving topics on social media. This paper introduces a ZSSD framework named KEL-CA. To enable the model to more effectively utilize transferable stance features for representing unseen targets, the framework incorporates a multi-layer contrastive learning and adversarial domain transfer module. Unlike traditional contrastive or adversarial learning, our framework captures both correlations and distinctions between invariant and specific features, as well as between different stance labels, and enhances the generalization ability and robustness of the features. Subsequently, to address the problem of insufficient information about the target context, we designed a dual external knowledge injection module that uses a large language model (LLM) to extract external knowledge from a Wikipedia-based local knowledge base and a Chain-of-Thought (COT) process to ensure the timeliness and relevance of the knowledge to infer the stances of unseen targets. Experimental results demonstrate that our approach outperforms existing models on two benchmark datasets, thereby validating its efficacy in ZSSD tasks.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128849"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016205","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Zero-shot stance detection (ZSSD) is a task that involves identifying the author’s perspective on specific issues in text, particularly when the target topic has not been encountered during the model training process, to address rapidly evolving topics on social media. This paper introduces a ZSSD framework named KEL-CA. To enable the model to more effectively utilize transferable stance features for representing unseen targets, the framework incorporates a multi-layer contrastive learning and adversarial domain transfer module. Unlike traditional contrastive or adversarial learning, our framework captures both correlations and distinctions between invariant and specific features, as well as between different stance labels, and enhances the generalization ability and robustness of the features. Subsequently, to address the problem of insufficient information about the target context, we designed a dual external knowledge injection module that uses a large language model (LLM) to extract external knowledge from a Wikipedia-based local knowledge base and a Chain-of-Thought (COT) process to ensure the timeliness and relevance of the knowledge to infer the stances of unseen targets. Experimental results demonstrate that our approach outperforms existing models on two benchmark datasets, thereby validating its efficacy in ZSSD tasks.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.