Domain generalization through latent distribution exploration for motor imagery EEG classification

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hao Song , Qingshan She , Feng Fang , Su Liu , Yun Chen , Yingchun Zhang
{"title":"Domain generalization through latent distribution exploration for motor imagery EEG classification","authors":"Hao Song ,&nbsp;Qingshan She ,&nbsp;Feng Fang ,&nbsp;Su Liu ,&nbsp;Yun Chen ,&nbsp;Yingchun Zhang","doi":"10.1016/j.neucom.2024.128889","DOIUrl":null,"url":null,"abstract":"<div><div>Electroencephalography (EEG)-based Motor Imagery (MI) brain-computer interface (BCI) systems play essential roles in motor function rehabilitation for patients with post-stroke. Existing neural networks for decoding MI EEG face challenges due to nonstationary characteristics and subject-specific variations of EEG data. To address these challenges and improve generalization performance, this study proposes a domain generalization (DG) model that eliminates the need for user-specific calibration in real-life applications. Specifically, the proposed model comprises two branches: the first branch applies several independent decision-making networks to decode and classify subjects’ motor intentions, while the second branch adaptively assigns weights to classification results and fuses them into a comprehensive decision. Both branches utilize EEGNet and ShallowConvNet to extract time-frequency-spatial features. By implementing multiple classification networks, the model can learn a broad range of data distributions from source subjects, which contributes to improved generalization performance on target subjects. The proposed EEG-DG framework was evaluated on BCI Competition IV Dataset 2a, 2b and PhysioNet. Results show that the proposed framework significantly enhances the classification performance of MI EEG, outperforming several state-of-the-art models on all three datasets, underlining its superior efficacy in real-world scenarios and exceptional generalization performance. The source code can be accessed at <span><span>https://github.com/DrugLover/Multibranch-DG-EEG</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128889"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016606","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalography (EEG)-based Motor Imagery (MI) brain-computer interface (BCI) systems play essential roles in motor function rehabilitation for patients with post-stroke. Existing neural networks for decoding MI EEG face challenges due to nonstationary characteristics and subject-specific variations of EEG data. To address these challenges and improve generalization performance, this study proposes a domain generalization (DG) model that eliminates the need for user-specific calibration in real-life applications. Specifically, the proposed model comprises two branches: the first branch applies several independent decision-making networks to decode and classify subjects’ motor intentions, while the second branch adaptively assigns weights to classification results and fuses them into a comprehensive decision. Both branches utilize EEGNet and ShallowConvNet to extract time-frequency-spatial features. By implementing multiple classification networks, the model can learn a broad range of data distributions from source subjects, which contributes to improved generalization performance on target subjects. The proposed EEG-DG framework was evaluated on BCI Competition IV Dataset 2a, 2b and PhysioNet. Results show that the proposed framework significantly enhances the classification performance of MI EEG, outperforming several state-of-the-art models on all three datasets, underlining its superior efficacy in real-world scenarios and exceptional generalization performance. The source code can be accessed at https://github.com/DrugLover/Multibranch-DG-EEG.
通过潜在分布探索实现运动图像脑电图分类的领域泛化
基于脑电图(EEG)的运动想象(MI)脑机接口(BCI)系统在中风后患者的运动功能康复中发挥着重要作用。由于脑电图数据的非稳态特性和特定受试者的差异,现有用于解码 MI 脑电图的神经网络面临着挑战。为了应对这些挑战并提高泛化性能,本研究提出了一种域泛化(DG)模型,该模型无需在实际应用中进行用户特定校准。具体来说,所提议的模型包括两个分支:第一个分支应用多个独立的决策网络对受试者的运动意图进行解码和分类,而第二个分支则自适应地为分类结果分配权重,并将其融合为一个综合决策。两个分支均利用 EEGNet 和 ShallowConvNet 提取时频空间特征。通过实施多个分类网络,该模型可以从源受试者那里学习广泛的数据分布,从而有助于提高对目标受试者的泛化性能。在 BCI Competition IV 数据集 2a、2b 和 PhysioNet 上对所提出的 EEG-DG 框架进行了评估。结果表明,所提出的框架大大提高了 MI EEG 的分类性能,在所有三个数据集上的表现都优于几个最先进的模型,凸显了其在真实世界场景中的卓越功效和出色的泛化性能。源代码可通过 https://github.com/DrugLover/Multibranch-DG-EEG 访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信