Xiaocheng Luo , Yanping Chen , Ruixue Tang , Caiwei Yang , Ruizhang Huang , Yongbin Qin
{"title":"A bi-consolidating model for joint relational triple extraction","authors":"Xiaocheng Luo , Yanping Chen , Ruixue Tang , Caiwei Yang , Ruizhang Huang , Yongbin Qin","doi":"10.1016/j.neucom.2024.128768","DOIUrl":null,"url":null,"abstract":"<div><div>Current methods to extract relational triples directly make a prediction based on a possible entity pair in a raw sentence without depending on entity recognition. The task suffers from a serious semantic overlapping problem, in which several relation triples may share one or two entities in a sentence. In this paper, based on a two-dimensional sentence representation, a bi-consolidating model is proposed to address this problem by simultaneously reinforcing the local and global semantic features relevant to a relation triple. This model consists of a local consolidation component and a global consolidation component. The first component uses a pixel difference convolution to enhance semantic information of a possible triple representation from adjacent regions and mitigate noise in neighboring neighbors. The second component strengthens the triple representation based a channel attention and a spatial attention, which has the advantage to learn remote semantic dependencies in a sentence. They are helpful to improve the performance of both entity identification and relation type classification in relation triple extraction. After evaluated on several publish datasets, the bi-consolidating model achieves competitive performance. Analytical experiments demonstrate the effectiveness of our model for relational triple extraction and give motivation for other natural language processing tasks.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128768"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122401539X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Current methods to extract relational triples directly make a prediction based on a possible entity pair in a raw sentence without depending on entity recognition. The task suffers from a serious semantic overlapping problem, in which several relation triples may share one or two entities in a sentence. In this paper, based on a two-dimensional sentence representation, a bi-consolidating model is proposed to address this problem by simultaneously reinforcing the local and global semantic features relevant to a relation triple. This model consists of a local consolidation component and a global consolidation component. The first component uses a pixel difference convolution to enhance semantic information of a possible triple representation from adjacent regions and mitigate noise in neighboring neighbors. The second component strengthens the triple representation based a channel attention and a spatial attention, which has the advantage to learn remote semantic dependencies in a sentence. They are helpful to improve the performance of both entity identification and relation type classification in relation triple extraction. After evaluated on several publish datasets, the bi-consolidating model achieves competitive performance. Analytical experiments demonstrate the effectiveness of our model for relational triple extraction and give motivation for other natural language processing tasks.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.