Boosting multi-document summarization with hierarchical graph convolutional networks

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yingjie Song , Li Yang , Wenming Luo , Xiong Xiao , Zhuo Tang
{"title":"Boosting multi-document summarization with hierarchical graph convolutional networks","authors":"Yingjie Song ,&nbsp;Li Yang ,&nbsp;Wenming Luo ,&nbsp;Xiong Xiao ,&nbsp;Zhuo Tang","doi":"10.1016/j.neucom.2024.128753","DOIUrl":null,"url":null,"abstract":"<div><div>The input of the multi-document summarization task is usually long and has high redundancy. Encoding multiple documents is a challenge for the Seq2Seq architecture. The way of concatenating multiple documents into a sequence ignores the relation between documents. Attention-based Seq2Seq architectures have slightly improved the cross-document relation modeling for multi-document summarization. However, these methods ignore the relation between sentences, and there is little improvement that can be achieved through the attention mechanism alone. This paper proposes a hierarchical approach to leveraging the relation between words, sentences, and documents for abstractive multi-document summarization. Our model employs the Graph Convolutional Networks (GCN) for capturing the cross-document and cross-sentence relations. The GCN module can enrich semantic representations by generating high-level hidden features. Our model achieves significant improvement over the attention-based baseline, beating the Hierarchical Transformer by 3.4/1.64, 1.92/1.44 ROUGE-1/2 F1 points on the Multi-News and WikiSum datasets, respectively. Experimental results demonstrate that our delivered method brings substantial improvements over several strong baselines.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128753"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015248","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The input of the multi-document summarization task is usually long and has high redundancy. Encoding multiple documents is a challenge for the Seq2Seq architecture. The way of concatenating multiple documents into a sequence ignores the relation between documents. Attention-based Seq2Seq architectures have slightly improved the cross-document relation modeling for multi-document summarization. However, these methods ignore the relation between sentences, and there is little improvement that can be achieved through the attention mechanism alone. This paper proposes a hierarchical approach to leveraging the relation between words, sentences, and documents for abstractive multi-document summarization. Our model employs the Graph Convolutional Networks (GCN) for capturing the cross-document and cross-sentence relations. The GCN module can enrich semantic representations by generating high-level hidden features. Our model achieves significant improvement over the attention-based baseline, beating the Hierarchical Transformer by 3.4/1.64, 1.92/1.44 ROUGE-1/2 F1 points on the Multi-News and WikiSum datasets, respectively. Experimental results demonstrate that our delivered method brings substantial improvements over several strong baselines.
利用分层图卷积网络促进多文档摘要分析
多文档摘要任务的输入通常较长,且冗余度较高。多文档编码是 Seq2Seq 架构面临的一个挑战。将多个文档连接成序列的方式忽略了文档之间的关系。基于注意力的 Seq2Seq 架构略微改进了多文档摘要的跨文档关系建模。但是,这些方法忽略了句子之间的关系,仅靠注意力机制所能实现的改进微乎其微。本文提出了一种分层方法,利用单词、句子和文档之间的关系进行抽象多文档摘要。我们的模型采用图卷积网络(GCN)来捕捉跨文档和跨句子的关系。GCN 模块可通过生成高级隐藏特征来丰富语义表征。与基于注意力的基线相比,我们的模型取得了显著的改进,在 Multi-News 和 WikiSum 数据集上分别以 3.4/1.64 和 1.92/1.44 ROUGE-1/2 F1 分数击败了 Hierarchical Transformer。实验结果表明,与几种强大的基线相比,我们所提供的方法有了实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信