PIDNODEs: Neural ordinary differential equations inspired by a proportional–integral–derivative controller

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Pengkai Wang , Song Chen , Jiaxu Liu , Shengze Cai , Chao Xu
{"title":"PIDNODEs: Neural ordinary differential equations inspired by a proportional–integral–derivative controller","authors":"Pengkai Wang ,&nbsp;Song Chen ,&nbsp;Jiaxu Liu ,&nbsp;Shengze Cai ,&nbsp;Chao Xu","doi":"10.1016/j.neucom.2024.128769","DOIUrl":null,"url":null,"abstract":"<div><div>Neural Ordinary Differential Equations (NODEs) are a novel family of infinite-depth neural-net models through solving ODEs and their adjoint equations. In this paper, we present a strategy to enhance the training and inference of NODEs by integrating a Proportional–Integral–Derivative (PID) controller into the framework of Heavy Ball NODE, resulting in the proposed PIDNODEs and its generalized version, GPIDNODEs. By leveraging the advantages of control, PIDNODEs and GPIDNODEs can address the stiff ODE challenges by adjusting the parameters (i.e., <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>) in the PID module. The experiments confirm the superiority of PIDNODEs/GPIDNODEs over other NODE baselines on different computer vision and pattern recognition tasks, including image classification, point cloud separation and learning long-term dependencies from irregular time-series data for a physical dynamic system. These experiments demonstrate that the proposed models have higher accuracy and fewer function evaluations while alleviating the dilemma of exploding and vanishing gradients, particularly when learning long-term dependencies from a large amount of data.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128769"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015406","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Neural Ordinary Differential Equations (NODEs) are a novel family of infinite-depth neural-net models through solving ODEs and their adjoint equations. In this paper, we present a strategy to enhance the training and inference of NODEs by integrating a Proportional–Integral–Derivative (PID) controller into the framework of Heavy Ball NODE, resulting in the proposed PIDNODEs and its generalized version, GPIDNODEs. By leveraging the advantages of control, PIDNODEs and GPIDNODEs can address the stiff ODE challenges by adjusting the parameters (i.e., Kp, Ki and Kd) in the PID module. The experiments confirm the superiority of PIDNODEs/GPIDNODEs over other NODE baselines on different computer vision and pattern recognition tasks, including image classification, point cloud separation and learning long-term dependencies from irregular time-series data for a physical dynamic system. These experiments demonstrate that the proposed models have higher accuracy and fewer function evaluations while alleviating the dilemma of exploding and vanishing gradients, particularly when learning long-term dependencies from a large amount of data.
PIDNODEs:受比例-积分-派生控制器启发的神经常微分方程
神经常微分方程(NODEs)是通过求解 ODEs 及其邻接方程来建立无限深度神经网络模型的新型系列。在本文中,我们提出了一种增强 NODEs 训练和推理的策略,即在重球 NODE 框架中集成比例-正积分-反演 (PID) 控制器,从而形成了 PIDNODEs 及其广义版本 GPIDNODEs。PIDNODEs 和 GPIDNODEs 利用控制的优势,通过调整 PID 模块中的参数(即 Kp、Ki 和 Kd),可以解决僵化的 ODE 挑战。实验证实,在不同的计算机视觉和模式识别任务中,PIDNODEs/GPIDNODEs 优于其他 NODE 基线,这些任务包括图像分类、点云分离以及从物理动态系统的不规则时间序列数据中学习长期依赖关系。这些实验证明,所提出的模型具有更高的准确性和更少的函数评估次数,同时缓解了梯度爆炸和消失的困境,特别是从大量数据中学习长期依赖关系时更是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信