{"title":"Broadband microwave absorption and electromagnetic properties of Gd–Al–Co-doped M−type barium hexaferrite in 2–18 GHz range","authors":"Weihua Liao, Kai Huang, Wenwen Xu, Jiangying Yu, Ping Li, Jinrong Xu","doi":"10.1016/j.jmmm.2024.172609","DOIUrl":null,"url":null,"abstract":"<div><div>Gd–Al–Co-doped BaFe<sub>12−3x</sub>(GdAlCo)<sub>x</sub>O<sub>19</sub> (x = 0, 0.1, 0.2, 0.3, 0.4) was synthesized via the hydrothermal method. We performed comprehensive characterization using XRD, SEM, BET, VSM, XPS, and VNA techniques to explore the impact of substituting magnetic Co<sup>2+</sup>, Gd<sup>3+</sup>, and nonmagnetic Al<sup>3+</sup> for Fe<sup>3+</sup> on the morphology, specific surface area, magnetic, and microwave absorption (MWA) properties of BaFe<sub>12−3x</sub>(GdAlCo)<sub>x</sub>O<sub>19</sub>. Investigating the MWA properties of BaFe<sub>12−3x</sub>(GdAlCo)<sub>x</sub>O<sub>19</sub> in the 2–18 GHz range, we find that all doped samples demonstrate excellent MWA characteristics. The sample BaFe<sub>11.1</sub>(GdAlCo)<sub>0.3</sub>O<sub>19</sub> achieves a minimum reflection loss (RL<sub>min</sub>) of − 48.13 dB at a thickness of 2.07 mm, indicating an absorption of over 99 % of incident microwaves. The effective absorption bandwidth (EAB) for all four groups of doped samples exceeds 5.98 GHz. Notably, the x = 0.1 samples reach an EAB of 9.15 GHz at only 2.0 mm thickness, covering most of the X-band and the entire Ku band. Gd-Al-Co co doping of BaFe<sub>12</sub>O<sub>19</sub> not only improves its reflection loss ability, but also increases its absorption bandwidth. Improved the drawbacks of narrow bandwidth and poor loss capability in BaFe<sub>12</sub>O<sub>19</sub>. Consequently, BaFe<sub>12−3x</sub>(GdAlCo)<sub>x</sub>O<sub>19</sub> material shows significant potential for practical applications.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"612 ","pages":"Article 172609"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885324009004","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gd–Al–Co-doped BaFe12−3x(GdAlCo)xO19 (x = 0, 0.1, 0.2, 0.3, 0.4) was synthesized via the hydrothermal method. We performed comprehensive characterization using XRD, SEM, BET, VSM, XPS, and VNA techniques to explore the impact of substituting magnetic Co2+, Gd3+, and nonmagnetic Al3+ for Fe3+ on the morphology, specific surface area, magnetic, and microwave absorption (MWA) properties of BaFe12−3x(GdAlCo)xO19. Investigating the MWA properties of BaFe12−3x(GdAlCo)xO19 in the 2–18 GHz range, we find that all doped samples demonstrate excellent MWA characteristics. The sample BaFe11.1(GdAlCo)0.3O19 achieves a minimum reflection loss (RLmin) of − 48.13 dB at a thickness of 2.07 mm, indicating an absorption of over 99 % of incident microwaves. The effective absorption bandwidth (EAB) for all four groups of doped samples exceeds 5.98 GHz. Notably, the x = 0.1 samples reach an EAB of 9.15 GHz at only 2.0 mm thickness, covering most of the X-band and the entire Ku band. Gd-Al-Co co doping of BaFe12O19 not only improves its reflection loss ability, but also increases its absorption bandwidth. Improved the drawbacks of narrow bandwidth and poor loss capability in BaFe12O19. Consequently, BaFe12−3x(GdAlCo)xO19 material shows significant potential for practical applications.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.