Gerhard Schellhorn, Stefan Bodenmüller, Wolfgang Reif
{"title":"Verification of forward simulations with thread-local, step-local proof obligations","authors":"Gerhard Schellhorn, Stefan Bodenmüller, Wolfgang Reif","doi":"10.1016/j.scico.2024.103227","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a proof technique for proving refinements for general state-based models of concurrent systems that reduces proving forward simulations to thread-local, step-local proof obligations. The approach has been implemented in our theorem prover KIV, which translates imperative programs to a set of transition rules and generates proof obligations accordingly. Instances of this proof technique should also be applicable to systems specified with ASM rules, B events, or Z operations. To exemplify the proof methodology, we demonstrate it with two case studies. The first verifies linearizability of a lock-free implementation of concurrent hash sets by showing that it refines an abstract concurrent system with atomic operations. The second applies the proof technique to the verification of opacity of Transactional Mutex Locks (TML), a Software Transactional Memory algorithm. Compared to the standard approach of proving a forward simulation directly, both case studies show a significant reduction in proof effort.</div></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"241 ","pages":"Article 103227"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642324001503","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a proof technique for proving refinements for general state-based models of concurrent systems that reduces proving forward simulations to thread-local, step-local proof obligations. The approach has been implemented in our theorem prover KIV, which translates imperative programs to a set of transition rules and generates proof obligations accordingly. Instances of this proof technique should also be applicable to systems specified with ASM rules, B events, or Z operations. To exemplify the proof methodology, we demonstrate it with two case studies. The first verifies linearizability of a lock-free implementation of concurrent hash sets by showing that it refines an abstract concurrent system with atomic operations. The second applies the proof technique to the verification of opacity of Transactional Mutex Locks (TML), a Software Transactional Memory algorithm. Compared to the standard approach of proving a forward simulation directly, both case studies show a significant reduction in proof effort.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.