Globality of the DPW construction for Smyth potentials in the case of SU1,1

IF 0.6 4区 数学 Q3 MATHEMATICS
Tadashi Udagawa
{"title":"Globality of the DPW construction for Smyth potentials in the case of SU1,1","authors":"Tadashi Udagawa","doi":"10.1016/j.difgeo.2024.102211","DOIUrl":null,"url":null,"abstract":"<div><div>We construct harmonic maps into <span><math><msub><mrow><mi>SU</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>/</mo><msub><mrow><mi>U</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> starting from Smyth potentials <em>ξ</em>, by the DPW method. In this method, harmonic maps are obtained from the Iwasawa factorization of a solution <em>L</em> of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>d</mi><mi>L</mi><mo>=</mo><mi>ξ</mi></math></span>. However, the Iwasawa factorization in the case of a noncompact group is not always global. We show that <em>L</em> can be expressed in terms of Bessel functions and from the asymptotic expansion of Bessel functions we solve a Riemann-Hilbert problem to give a global Iwasawa factorization. In this way we give a more direct proof of the globality of our solution than in the work of Dorfmeister-Guest-Rossman <span><span>[5]</span></span>, while avoiding the general isomonodromy theory used by Guest-Its-Lin <span><span>[11]</span></span>, <span><span>[12]</span></span>.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102211"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524001049","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct harmonic maps into SU1,1/U1 starting from Smyth potentials ξ, by the DPW method. In this method, harmonic maps are obtained from the Iwasawa factorization of a solution L of L1dL=ξ. However, the Iwasawa factorization in the case of a noncompact group is not always global. We show that L can be expressed in terms of Bessel functions and from the asymptotic expansion of Bessel functions we solve a Riemann-Hilbert problem to give a global Iwasawa factorization. In this way we give a more direct proof of the globality of our solution than in the work of Dorfmeister-Guest-Rossman [5], while avoiding the general isomonodromy theory used by Guest-Its-Lin [11], [12].
SU1,1情况下斯密斯电势的DPW构造的全局性
我们通过 DPW 方法,从斯迈势 ξ 开始,构建进入 SU1,1/U1 的谐波映射。在这种方法中,谐波映射是从 L-1dL=ξ 的解 L 的岩泽因子化得到的。然而,在非紧密群的情况下,岩泽因式分解并不总是全局的。我们证明 L 可以用贝塞尔函数来表示,并通过贝塞尔函数的渐近展开求解黎曼-希尔伯特问题,从而给出全局岩泽因式分解。与 Dorfmeister-Guest-Rossman [5] 的研究相比,我们通过这种方法更直接地证明了我们的求解的全局性,同时避免了 Guest-Its-Lin [11], [12] 所使用的一般等单调性理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信