Generalized likelihood ratio method for stochastic models with uniform random numbers as inputs

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Yijie Peng , Michael C. Fu , Jiaqiao Hu , Pierre L’Ecuyer , Bruno Tuffin
{"title":"Generalized likelihood ratio method for stochastic models with uniform random numbers as inputs","authors":"Yijie Peng ,&nbsp;Michael C. Fu ,&nbsp;Jiaqiao Hu ,&nbsp;Pierre L’Ecuyer ,&nbsp;Bruno Tuffin","doi":"10.1016/j.ejor.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a new unbiased stochastic gradient estimator for a family of stochastic models driven by uniform random numbers as inputs. Dropping the requirement that the tails of the density of the input random variables decay smoothly, the estimator extends the applicability of the generalized likelihood ratio (GLR) method. We demonstrate the new estimator for several general classes of input random variates, including independent inverse transform random variates and dependent input random variables governed by an Archimedean copula. We show how the new estimator works in settings such as density estimation, and we illustrate applications to credit risk derivatives. Numerical experiments substantiate broad applicability and flexibility in dealing with discontinuities in the sample performance.</div></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"321 2","pages":"Pages 493-502"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221724007549","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new unbiased stochastic gradient estimator for a family of stochastic models driven by uniform random numbers as inputs. Dropping the requirement that the tails of the density of the input random variables decay smoothly, the estimator extends the applicability of the generalized likelihood ratio (GLR) method. We demonstrate the new estimator for several general classes of input random variates, including independent inverse transform random variates and dependent input random variables governed by an Archimedean copula. We show how the new estimator works in settings such as density estimation, and we illustrate applications to credit risk derivatives. Numerical experiments substantiate broad applicability and flexibility in dealing with discontinuities in the sample performance.
以均匀随机数为输入的随机模型的广义似然比法
我们提出了一种新的无偏随机梯度估计器,适用于由均匀随机数作为输入驱动的随机模型系列。由于放弃了输入随机变量密度尾部平滑衰减的要求,该估计器扩展了广义似然比(GLR)方法的适用性。我们针对几类输入随机变量(包括独立反变换随机变量和受阿基米德协方差控制的从属输入随机变量)演示了新的估计方法。我们展示了新估计器在密度估计等环境中的工作原理,并说明了它在信用风险衍生品中的应用。数值实验证明了它在处理样本性能不连续性方面的广泛适用性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信