Phenyl-C61-butyric acid methyl ester (PCBM) nanoparticle mediated boasting of photoelectrochemical and photocatalytic properties of bismuth vanadate/lead sulphide (BiVO4/PbS) composite thin-film

Abhishek Sharma, Satyajit Gupta
{"title":"Phenyl-C61-butyric acid methyl ester (PCBM) nanoparticle mediated boasting of photoelectrochemical and photocatalytic properties of bismuth vanadate/lead sulphide (BiVO4/PbS) composite thin-film","authors":"Abhishek Sharma,&nbsp;Satyajit Gupta","doi":"10.1016/j.prime.2024.100837","DOIUrl":null,"url":null,"abstract":"<div><div>This work delineates the fabrication and characterization of BiVO<sub>4</sub>/PbS and BiVO<sub>4</sub>/PCBM/PbS-based composite heterostructure for visible-light-driven applications, such as pollution remediation, photoelectrochemistry (PEC), and applied bias to photoelectrochemical hydrogen generation efficiency (ABPE). The heterostructured composite was synthesized by a combination of Spin coating (for bismuth vanadate - BiVO<sub>4</sub> thin film fabrication and PCBM deposition), and Successive Ionic Layer Absorption and Reaction -SILAR (for lead sulphide - PbS deposition) method and characterized using UV–visible Spectroscopy, time-resolved photoluminescence spectroscopy (TRPL), field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and photoelectrochemistry (PEC) analysis (PEC). The key benefit of incorporation of PCBM nanoparticles in BiVO<sub>4</sub>/PCBM/PbS was realized through <em>1)</em> ∼ 70 % improvement in the photocurrent density during electrochemistry analysis, <em>2)</em> ∼ 2.3 times enhancement in ABPE, and <em>3) ∼</em> 43 % enhancements in ‘rate constant’ towards photocatalytic (methylene blue) degradation compared to BiVO<sub>4</sub>/PbS. The work shows the benefits of the PCBM-conductive carbon-based electron transport layer as a bridge between two inorganic semiconductors (BiVO<sub>4</sub> and PbS) towards enhancing fast electron separation and transport at the interface during visible light irradiation.</div></div>","PeriodicalId":100488,"journal":{"name":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","volume":"10 ","pages":"Article 100837"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772671124004170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work delineates the fabrication and characterization of BiVO4/PbS and BiVO4/PCBM/PbS-based composite heterostructure for visible-light-driven applications, such as pollution remediation, photoelectrochemistry (PEC), and applied bias to photoelectrochemical hydrogen generation efficiency (ABPE). The heterostructured composite was synthesized by a combination of Spin coating (for bismuth vanadate - BiVO4 thin film fabrication and PCBM deposition), and Successive Ionic Layer Absorption and Reaction -SILAR (for lead sulphide - PbS deposition) method and characterized using UV–visible Spectroscopy, time-resolved photoluminescence spectroscopy (TRPL), field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and photoelectrochemistry (PEC) analysis (PEC). The key benefit of incorporation of PCBM nanoparticles in BiVO4/PCBM/PbS was realized through 1) ∼ 70 % improvement in the photocurrent density during electrochemistry analysis, 2) ∼ 2.3 times enhancement in ABPE, and 3) ∼ 43 % enhancements in ‘rate constant’ towards photocatalytic (methylene blue) degradation compared to BiVO4/PbS. The work shows the benefits of the PCBM-conductive carbon-based electron transport layer as a bridge between two inorganic semiconductors (BiVO4 and PbS) towards enhancing fast electron separation and transport at the interface during visible light irradiation.

Abstract Image

以苯基-C61-丁酸甲酯(PCBM)纳米粒子为介导,提高钒酸铋/硫化铅(BiVO4/PbS)复合薄膜的光电化学和光催化性能
这项工作描述了基于 BiVO4/PbS 和 BiVO4/PCBM/PbS 的复合异质结构的制备和表征,这些异质结构可用于可见光驱动的应用,如污染修复、光电化学(PEC)和光电化学制氢效率(ABPE)应用偏压。异质结构复合材料是通过旋涂法(用于钒酸铋 - BiVO4 薄膜制造和 PCBM 沉积)和连续离子层吸收和反应 -SILAR 法(用于硫化铅 - PbS 沉积)合成的,并使用紫外可见光谱对其进行了表征、时间分辨光致发光光谱法 (TRPL)、场发射扫描电子显微镜 (FESEM)、X 射线衍射 (XRD) 和光电化学分析 (PEC)。与 BiVO4/PbS 相比,在 BiVO4/PCBM/PbS 中加入 PCBM 纳米粒子的主要优势体现在:1)电化学分析中的光电流密度提高了 70%;2)ABPE 提高了 2.3 倍;3)光催化(亚甲基蓝)降解的 "速率常数 "提高了 43%。这项研究表明,PCBM 导电碳基电子传输层作为两种无机半导体(BiVO4 和 PbS)之间的桥梁,可在可见光照射期间增强界面上的快速电子分离和传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信