Syntheses, crystal structures, and anticancer activities of organotin carboxylates based on Alrestatin

IF 4 2区 化学 Q2 CHEMISTRY, PHYSICAL
Yuxing Tan , Zhijian Zhang , Jiazi Liu , Yujun Tan , Wujiu Jiang
{"title":"Syntheses, crystal structures, and anticancer activities of organotin carboxylates based on Alrestatin","authors":"Yuxing Tan ,&nbsp;Zhijian Zhang ,&nbsp;Jiazi Liu ,&nbsp;Yujun Tan ,&nbsp;Wujiu Jiang","doi":"10.1016/j.molstruc.2024.140697","DOIUrl":null,"url":null,"abstract":"<div><div>Six organotin carboxylates based on the Alrestatin ligand (<strong>HL</strong>) were synthesized and characterized using elemental analysis, IR spectroscopy, NMR spectroscopy, and TGA techniques. The molecular structure of complexes <strong>a-f</strong> was confirmed through single-crystal X-ray crystallography. Alrestatin demonstrated a tendency to adopt various coordination modes, leading to the formation of diverse molecular configurations in the organotin carboxylates. Hirshfeld surface analysis indicated that the six complexes exhibited similar contributions of different contacts to the Hirshfeld surfaces, with reciprocal H···H/C/O contacts dominating over 91 % of the total Hirshfeld surface. The <em>in vitro</em> anticancer activities of all the complexes were evaluated by a CCK8 assay against three human cancer cell lines (NCI-H460, HepG2, and MCF7). The anticancer activity of Alrestatin was effectively increased by introducing the butyl tin group, and exhibited excellent anticancer activity <em>in vitro</em>, significantly superior to cisplatin. The DNA binding of complex <strong>d</strong> was studied by UV–visible absorption spectrometry and fluorescence competitive assays.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1322 ","pages":"Article 140697"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024032058","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Six organotin carboxylates based on the Alrestatin ligand (HL) were synthesized and characterized using elemental analysis, IR spectroscopy, NMR spectroscopy, and TGA techniques. The molecular structure of complexes a-f was confirmed through single-crystal X-ray crystallography. Alrestatin demonstrated a tendency to adopt various coordination modes, leading to the formation of diverse molecular configurations in the organotin carboxylates. Hirshfeld surface analysis indicated that the six complexes exhibited similar contributions of different contacts to the Hirshfeld surfaces, with reciprocal H···H/C/O contacts dominating over 91 % of the total Hirshfeld surface. The in vitro anticancer activities of all the complexes were evaluated by a CCK8 assay against three human cancer cell lines (NCI-H460, HepG2, and MCF7). The anticancer activity of Alrestatin was effectively increased by introducing the butyl tin group, and exhibited excellent anticancer activity in vitro, significantly superior to cisplatin. The DNA binding of complex d was studied by UV–visible absorption spectrometry and fluorescence competitive assays.

Abstract Image

基于阿司他丁的有机锡羧酸盐的合成、晶体结构和抗癌活性
利用元素分析、红外光谱、核磁共振光谱和热重分析技术合成并表征了六种基于阿司他丁配体(HL)的有机锡羧酸盐。通过单晶 X 射线晶体学研究证实了 a-f 复合物的分子结构。阿司他丁显示出采用各种配位模式的趋势,从而在有机锡羧酸盐中形成了不同的分子构型。Hirshfeld表面分析表明,六种复合物的Hirshfeld表面呈现出类似的不同接触,其中H--H/C/O相互接触占Hirshfeld总表面的91%以上。针对三种人类癌细胞系(NCI-H460、HepG2 和 MCF7)的 CCK8 试验评估了所有复合物的体外抗癌活性。通过引入丁基锡基,阿司他丁的抗癌活性得到了有效提高,并在体外表现出卓越的抗癌活性,明显优于顺铂。通过紫外可见吸收光谱法和荧光竞争法研究了复合物 d 的 DNA 结合情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Structure
Journal of Molecular Structure 化学-物理化学
CiteScore
7.10
自引率
15.80%
发文量
2384
审稿时长
45 days
期刊介绍: The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including: • Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.) • Chemical intermediates • Molecules in excited states • Biological molecules • Polymers. The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example: • Infrared spectroscopy (mid, far, near) • Raman spectroscopy and non-linear Raman methods (CARS, etc.) • Electronic absorption spectroscopy • Optical rotatory dispersion and circular dichroism • Fluorescence and phosphorescence techniques • Electron spectroscopies (PES, XPS), EXAFS, etc. • Microwave spectroscopy • Electron diffraction • NMR and ESR spectroscopies • Mössbauer spectroscopy • X-ray crystallography • Charge Density Analyses • Computational Studies (supplementing experimental methods) We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信