On the existence of certain Lehmer numbers modulo a prime

IF 0.8 4区 数学 Q2 MATHEMATICS
Bidisha Roy
{"title":"On the existence of certain Lehmer numbers modulo a prime","authors":"Bidisha Roy","doi":"10.1016/j.exmath.2024.125628","DOIUrl":null,"url":null,"abstract":"<div><div>A <em>Lehmer number modulo an odd prime number</em> <span><math><mi>p</mi></math></span> is a residue class <span><math><mrow><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>×</mo></mrow></msubsup></mrow></math></span> whose multiplicative inverse <span><math><mover><mrow><mi>a</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> has opposite parity. Lehmer numbers that are also primitive roots are called <em>Lehmer primitive roots</em>. Analogously, in this article we say that a residue class <span><math><mrow><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>×</mo></mrow></msubsup></mrow></math></span> is a <em>Lehmer non-primitive root modulo</em> <span><math><mi>p</mi></math></span> if <span><math><mi>a</mi></math></span> is Lehmer number modulo <span><math><mi>p</mi></math></span> which is not a primitive root. We provide explicit estimates for the difference between the number of Lehmer non-primitive roots modulo a prime <span><math><mi>p</mi></math></span> and their “expected number”, which is <span><math><mfrac><mrow><mi>p</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>ϕ</mi><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. Similar explicit bounds are also provided for the number of <span><math><mi>k</mi></math></span>-consecutive Lehmer numbers modulo a prime, and <span><math><mi>k</mi></math></span>-consecutive Lehmer primitive roots We also prove that for any prime number <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>3</mn><mo>.</mo><mn>05</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>14</mn></mrow></msup></mrow></math></span>, there exists a Lehmer non-primitive root modulo <span><math><mi>p</mi></math></span>. Moreover, we show that for any positive integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span> (respectively, <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span>) and for all primes <span><math><mrow><mi>p</mi><mo>≥</mo><mo>exp</mo><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> (respectively, <span><math><mrow><mi>p</mi><mo>≥</mo><mo>exp</mo><mrow><mo>(</mo><mn>6</mn><mo>.</mo><mn>8</mn><msup><mrow><mn>7</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>), there exist <span><math><mi>k</mi></math></span> consecutive Lehmer numbers modulo <span><math><mi>p</mi></math></span> (respectively, <span><math><mi>k</mi></math></span> consecutive Lehmer primitive roots modulo <span><math><mi>p</mi></math></span>). For large primes <span><math><mi>p</mi></math></span>, these theorems generalize two results which were proven in a paper by Cohen and Trudgian appeared in the Journal of Number Theory in 2019.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"42 6","pages":"Article 125628"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086924000951","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A Lehmer number modulo an odd prime number p is a residue class aFp× whose multiplicative inverse ā has opposite parity. Lehmer numbers that are also primitive roots are called Lehmer primitive roots. Analogously, in this article we say that a residue class aFp× is a Lehmer non-primitive root modulo p if a is Lehmer number modulo p which is not a primitive root. We provide explicit estimates for the difference between the number of Lehmer non-primitive roots modulo a prime p and their “expected number”, which is p1ϕ(p1)2. Similar explicit bounds are also provided for the number of k-consecutive Lehmer numbers modulo a prime, and k-consecutive Lehmer primitive roots We also prove that for any prime number p>3.05×1014, there exists a Lehmer non-primitive root modulo p. Moreover, we show that for any positive integer k2 (respectively, k5) and for all primes pexp(122k3) (respectively, pexp(6.87k)), there exist k consecutive Lehmer numbers modulo p (respectively, k consecutive Lehmer primitive roots modulo p). For large primes p, these theorems generalize two results which were proven in a paper by Cohen and Trudgian appeared in the Journal of Number Theory in 2019.
论某些雷默数模数素数的存在性
奇素数 p 的雷默数是一个残差类 a∈Fp×,它的乘法逆 ā 具有相反的奇偶性。同时也是初根的雷默数称为雷默初根。与此类似,在本文中,如果一个残差类 a∈Fp× 是雷默数 modulo p,而 a 不是初等根,我们就说 a∈Fp× 是雷默非初等根 modulo p。我们提供了莱默尔非原始根数 modulo a prime p 与其 "期望数"(即 p-1-j(p-1)2)之差的明确估计值。我们还证明,对于任何素数 p>3.05×1014,都存在一个以 p 为模数的雷默非原始根。此外,我们还证明,对于任意正整数 k≥2(分别为 k≥5)和所有素数 p≥exp(122k3)(分别为 p≥exp(6.87k)),存在 k 个连续的雷默数 modulo p(分别为 k 个连续的雷默原始根 modulo p)。对于大素数 p,这些定理概括了科恩和特鲁吉安发表在 2019 年《数论杂志》上的论文中证明的两个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
41
审稿时长
40 days
期刊介绍: Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信