A hybrid wind power prediction model based on seasonal feature decomposition and enhanced feature extraction

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Weipeng Li , Yuting Chong , Xin Guo , Jun Liu
{"title":"A hybrid wind power prediction model based on seasonal feature decomposition and enhanced feature extraction","authors":"Weipeng Li ,&nbsp;Yuting Chong ,&nbsp;Xin Guo ,&nbsp;Jun Liu","doi":"10.1016/j.egyai.2024.100442","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient and accurate wind power prediction is crucial for enhancing the reliability and safety of power system. The data-driven forecasting methods are regarded as an effective solution. However, the inherent randomness and nonlinearity of wind power systems, along with the abundance of redundant information in measurement data, present challenges to forecasting methods. The integration of precise and efficient techniques for data feature decomposition and extraction is essential in conjunction with advanced data-driven forecasting models. Focus on the seasonal variation characteristics of wind energy, a hybrid wind power prediction model based on seasonal feature decomposition and enhanced feature extraction is proposed. The effectiveness and superiority of the proposed method in predictive accuracy are demonstrated through comprehensive multi-model experiment comparisons.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"18 ","pages":"Article 100442"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824001083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and accurate wind power prediction is crucial for enhancing the reliability and safety of power system. The data-driven forecasting methods are regarded as an effective solution. However, the inherent randomness and nonlinearity of wind power systems, along with the abundance of redundant information in measurement data, present challenges to forecasting methods. The integration of precise and efficient techniques for data feature decomposition and extraction is essential in conjunction with advanced data-driven forecasting models. Focus on the seasonal variation characteristics of wind energy, a hybrid wind power prediction model based on seasonal feature decomposition and enhanced feature extraction is proposed. The effectiveness and superiority of the proposed method in predictive accuracy are demonstrated through comprehensive multi-model experiment comparisons.

Abstract Image

基于季节特征分解和增强特征提取的混合风能预测模型
高效、准确的风电预测对提高电力系统的可靠性和安全性至关重要。数据驱动的预测方法被认为是一种有效的解决方案。然而,风力发电系统固有的随机性和非线性,以及测量数据中大量的冗余信息,给预测方法带来了挑战。将精确高效的数据特征分解和提取技术与先进的数据驱动预测模型相结合至关重要。针对风能的季节变化特征,提出了一种基于季节特征分解和增强特征提取的混合风能预测模型。通过多模型综合实验对比,证明了所提方法在预测精度方面的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信