Dynamic analysis and data-driven inference of a fractional-order SEIHDR epidemic model with variable parameters

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ruqi Li , Yurong Song , Min Li , Hongbo Qu , Guo-Ping Jiang
{"title":"Dynamic analysis and data-driven inference of a fractional-order SEIHDR epidemic model with variable parameters","authors":"Ruqi Li ,&nbsp;Yurong Song ,&nbsp;Min Li ,&nbsp;Hongbo Qu ,&nbsp;Guo-Ping Jiang","doi":"10.1016/j.matcom.2024.10.042","DOIUrl":null,"url":null,"abstract":"<div><div>To analyze and predict the evolution of contagion dynamics, fractional derivative modeling has emerged as an important technique. However, inferring the dynamical structure of fractional-order models with high degrees of freedom poses a challenge. In this paper, to elucidate the spreading mechanism and non-local properties of disease evolution, we propose a novel fractional-order SEIHDR epidemiological model with variable parameters, incorporating fractional derivatives in the Caputo sense. We compute the basic reproduction number by the next-generation matrix and establish local and global stability conditions based on this reproduction number. By using the fractional Adams–Bashforth method, we validate dynamical behaviors at different equilibrium points in both autonomous and non-autonomous scenarios, while qualitatively analyze the effects of fractional order on the dynamics. To effectively address the inverse problem of the proposed fractional SEIHDR model, we construct a fractional Physics-Informed Neural Network framework to simultaneously infer time-dependent parameters, fractional orders, and state components. Graphical results based on the COVID-19 pandemic data from Canada demonstrate the effectiveness of the proposed framework.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"230 ","pages":"Pages 1-19"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004415","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

To analyze and predict the evolution of contagion dynamics, fractional derivative modeling has emerged as an important technique. However, inferring the dynamical structure of fractional-order models with high degrees of freedom poses a challenge. In this paper, to elucidate the spreading mechanism and non-local properties of disease evolution, we propose a novel fractional-order SEIHDR epidemiological model with variable parameters, incorporating fractional derivatives in the Caputo sense. We compute the basic reproduction number by the next-generation matrix and establish local and global stability conditions based on this reproduction number. By using the fractional Adams–Bashforth method, we validate dynamical behaviors at different equilibrium points in both autonomous and non-autonomous scenarios, while qualitatively analyze the effects of fractional order on the dynamics. To effectively address the inverse problem of the proposed fractional SEIHDR model, we construct a fractional Physics-Informed Neural Network framework to simultaneously infer time-dependent parameters, fractional orders, and state components. Graphical results based on the COVID-19 pandemic data from Canada demonstrate the effectiveness of the proposed framework.
参数可变的分数阶 SEIHDR 流行病模型的动态分析和数据驱动推断
为了分析和预测传染动态的演变,分数导数建模已成为一项重要技术。然而,推断具有高自由度的分数阶模型的动力学结构是一项挑战。在本文中,为了阐明疾病演化的传播机制和非局部特性,我们提出了一种新的分数阶 SEIHDR 流行病学模型,该模型具有可变参数,并结合了 Caputo 意义上的分数导数。我们通过下一代矩阵计算基本繁殖数,并根据该繁殖数建立局部和全局稳定性条件。通过使用分数亚当斯-巴什福斯方法,我们验证了自主和非自主情况下不同平衡点的动力学行为,同时定性分析了分数阶数对动力学的影响。为了有效解决所提出的分数 SEIHDR 模型的逆问题,我们构建了一个分数物理信息神经网络框架,以同时推断与时间相关的参数、分数阶数和状态成分。基于加拿大 COVID-19 大流行病数据的图形结果证明了所提框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信