Quantitative fluctuation analysis of multiscale diffusion systems via Malliavin calculus

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
S. Bourguin , K. Spiliopoulos
{"title":"Quantitative fluctuation analysis of multiscale diffusion systems via Malliavin calculus","authors":"S. Bourguin ,&nbsp;K. Spiliopoulos","doi":"10.1016/j.spa.2024.104524","DOIUrl":null,"url":null,"abstract":"<div><div>We study fluctuations of small noise multiscale diffusions around their homogenized deterministic limit. We derive quantitative rates of convergence of the fluctuation processes to their Gaussian limits in the appropriate Wasserstein metric requiring detailed estimates of the first and second order Malliavin derivative of the slow component. We study a fully coupled system and the derivation of the quantitative rates of convergence depends on a very careful decomposition of the first and second Malliavin derivatives of the slow and fast component to terms that have different rates of convergence depending on the strength of the noise and timescale separation parameter.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"180 ","pages":"Article 104524"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002321","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We study fluctuations of small noise multiscale diffusions around their homogenized deterministic limit. We derive quantitative rates of convergence of the fluctuation processes to their Gaussian limits in the appropriate Wasserstein metric requiring detailed estimates of the first and second order Malliavin derivative of the slow component. We study a fully coupled system and the derivation of the quantitative rates of convergence depends on a very careful decomposition of the first and second Malliavin derivatives of the slow and fast component to terms that have different rates of convergence depending on the strength of the noise and timescale separation parameter.
通过马利亚文微积分对多尺度扩散系统进行定量波动分析
我们研究小噪声多尺度扩散在其均质确定性极限附近的波动。我们推导了在适当的瓦瑟斯坦度量中波动过程向其高斯极限的定量收敛率,这需要对慢速分量的一阶和二阶马利亚文导数进行详细估计。我们研究的是一个完全耦合的系统,定量收敛率的推导取决于对慢速分量和快速分量的一阶和二阶马利亚文导数进行非常仔细的分解,根据噪声强度和时标分离参数的不同,分解为具有不同收敛率的项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信