{"title":"A flow rate estimation method for gas–liquid two-phase flow based on filter-enhanced convolutional neural network","authors":"Yuxiao Jiang , Yinyan Liu , Lihui Peng , Yi Li","doi":"10.1016/j.engappai.2024.109593","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate estimation of flow rate in gas–liquid two-phase flow is crucial for various industrial processes. How to accurately estimate flow rate remains a challenging problem. Previously, deep learning-based methods focused on a few human-set points with single task learning. In addition, the data were not denoised. In this study, a flow rate estimation method based on a filter-enhanced convolutional neural network (FECNN) is proposed for gas–liquid two-phase flow. The method leverages multimodal data from a Venturi tube and an electrical capacitance tomography (ECT) sensor as input, utilizing multilayer perceptron (MLP) to fuse data. Subsequently, a learnable filter module is employed to attenuate noise adaptively, followed by multiscale convolutional neural network (MSCNN) extraction of flow rate features at different scales. Finally, the method enables estimate each single-phase flow rate simultaneously through multi-task learning (MTL). The adaptive noise attenuation capabilities of the learnable filter module are demonstrated, and the ability of the proposed MSCNN to capture multiscale flow rate features through multiple comparative experiments is shown. Additionally, a qualitative comparison with recent flow rate estimation methods is provided. Overall, this study demonstrates the effectiveness and superiority of the proposed FECNN in flow rate estimation.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109593"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624017512","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate estimation of flow rate in gas–liquid two-phase flow is crucial for various industrial processes. How to accurately estimate flow rate remains a challenging problem. Previously, deep learning-based methods focused on a few human-set points with single task learning. In addition, the data were not denoised. In this study, a flow rate estimation method based on a filter-enhanced convolutional neural network (FECNN) is proposed for gas–liquid two-phase flow. The method leverages multimodal data from a Venturi tube and an electrical capacitance tomography (ECT) sensor as input, utilizing multilayer perceptron (MLP) to fuse data. Subsequently, a learnable filter module is employed to attenuate noise adaptively, followed by multiscale convolutional neural network (MSCNN) extraction of flow rate features at different scales. Finally, the method enables estimate each single-phase flow rate simultaneously through multi-task learning (MTL). The adaptive noise attenuation capabilities of the learnable filter module are demonstrated, and the ability of the proposed MSCNN to capture multiscale flow rate features through multiple comparative experiments is shown. Additionally, a qualitative comparison with recent flow rate estimation methods is provided. Overall, this study demonstrates the effectiveness and superiority of the proposed FECNN in flow rate estimation.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.