Analysis of computer communication networks based on evaluation of domination and double domination for interval-valued T-spherical fuzzy graphs and their applications in decision-making problems
{"title":"Analysis of computer communication networks based on evaluation of domination and double domination for interval-valued T-spherical fuzzy graphs and their applications in decision-making problems","authors":"Sami Ullah Khan , Fiaz Hussain , Tapan Senapati , Shoukat Hussain , Zeeshan Ali , Domokos Esztergár-Kiss , Sarbast Moslem","doi":"10.1016/j.engappai.2024.109650","DOIUrl":null,"url":null,"abstract":"<div><div>This research introduces the Interval-Valued T-Spherical Fuzzy Graph (IVTSFG), a novel extension of fuzzy graph theory designed to address imprecision in decision-making processes, network analysis, and Computer Communication Networks (CCNs). Integrating four types of membership degrees-membership, non-membership, abstinence, and hesitancy-the IVTSFG framework significantly enhances the ability to model and analyze complex systems with uncertain data. The study explores the theories of domination and double domination within the context of IVTSFGs, presenting new methods for evaluating network resilience and optimization. Key findings include the development of innovative techniques for applying domination and double domination in IVTSFGs, demonstrating improved performance in managing CCNs. Comparative analysis with existing fuzzy graph models highlights the advantages of IVTSFGs, particularly in capturing nuanced relationships within network structures. The research provides practical examples and empirical comparisons, showcasing the framework's effectiveness in various decision-making scenarios.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109650"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018086","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This research introduces the Interval-Valued T-Spherical Fuzzy Graph (IVTSFG), a novel extension of fuzzy graph theory designed to address imprecision in decision-making processes, network analysis, and Computer Communication Networks (CCNs). Integrating four types of membership degrees-membership, non-membership, abstinence, and hesitancy-the IVTSFG framework significantly enhances the ability to model and analyze complex systems with uncertain data. The study explores the theories of domination and double domination within the context of IVTSFGs, presenting new methods for evaluating network resilience and optimization. Key findings include the development of innovative techniques for applying domination and double domination in IVTSFGs, demonstrating improved performance in managing CCNs. Comparative analysis with existing fuzzy graph models highlights the advantages of IVTSFGs, particularly in capturing nuanced relationships within network structures. The research provides practical examples and empirical comparisons, showcasing the framework's effectiveness in various decision-making scenarios.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.