{"title":"Learning discriminative representations by a Canonical Correlation Analysis-based Siamese Network for offline signature verification","authors":"Lidong Zheng , Xingbiao Zhao , Shengjie Xu, Yuanyuan Ren, Yuchen Zheng","doi":"10.1016/j.engappai.2024.109640","DOIUrl":null,"url":null,"abstract":"<div><div>In offline signature verification tasks, capturing different writing behaviors between genuine and forged signatures is a crucial and challenging step. In this paper, a novel writer independent Canonical Correlation Analysis-based Siamese Network (CCASigNet) is proposed to learn discriminative representations between different signature pairs. Specifically, we first construct signature pairs with three types: genuine-genuine, genuine-forged, and forged-forged. Then, different signature pairs are fed into CCASigNet for training with the Canonical Correlation Analysis (CCA) and classification-based losses. After network training, we extract the feature of signatures by CCASigNet and use writer-dependent classifiers to construct a comprehensive verification system. Extensive experiments on four benchmark signature datasets demonstrate that the proposed CCASigNet learns discriminative representations between different signature pairs and achieves state-of-the-art or competitive performance compared with advanced verification systems. In addition, the proposed CCASigNet has good generalization ability and is easy to transfer to different datasets with different language scripts within the realm of offline signature verification tasks.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109640"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624017986","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In offline signature verification tasks, capturing different writing behaviors between genuine and forged signatures is a crucial and challenging step. In this paper, a novel writer independent Canonical Correlation Analysis-based Siamese Network (CCASigNet) is proposed to learn discriminative representations between different signature pairs. Specifically, we first construct signature pairs with three types: genuine-genuine, genuine-forged, and forged-forged. Then, different signature pairs are fed into CCASigNet for training with the Canonical Correlation Analysis (CCA) and classification-based losses. After network training, we extract the feature of signatures by CCASigNet and use writer-dependent classifiers to construct a comprehensive verification system. Extensive experiments on four benchmark signature datasets demonstrate that the proposed CCASigNet learns discriminative representations between different signature pairs and achieves state-of-the-art or competitive performance compared with advanced verification systems. In addition, the proposed CCASigNet has good generalization ability and is easy to transfer to different datasets with different language scripts within the realm of offline signature verification tasks.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.