{"title":"Rice leaf disease identification and classification using machine learning techniques: A comprehensive review","authors":"Rashmi Mukherjee , Anushri Ghosh , Chandan Chakraborty , Jayanta Narayan De , Debi Prasad Mishra","doi":"10.1016/j.engappai.2024.109639","DOIUrl":null,"url":null,"abstract":"<div><div>In recent times, various researchers attempted to develop artificial intelligence (AI) assisted techniques in the field of agriculture for early detection, surveillance and treatment related to plant leaf, seed, root, and stem diseases. Rice leaf disease detection is one of such important areas, where the crop is frequently affected by various diseases. Farmer inspects usually at a later stage causing enormous damage. This manual inspection is subjective, time-consuming and error prone. Under such situation, AI-enabled tools and techniques play crucial role for early and more precise prediction of rice diseases.</div><div>This paper demonstrates a comprehensive review on application of AI-assisted rice leaf disease detection in the last two decades. Research studies were searched using relevant keywords through the online databases [<em>PubMed: 246; Science Direct: 100; Scopus: 56; Web of Science: 8; Willey online library:16; Cochrane:0; Cross references:20</em>]. A total of 446 titles and abstracts were identified as suitable for this study and finally, 48 most-appropriate state-of-art articles were considered. Furthermore, this study summarizes the visual characteristics of rice leaf diseases, imaging modalities and image acquisition techniques. Various image processing techniques for infected leaf area segmentation and feature extraction were also summarized. Finally, the reported machine learning (ML) algorithms were discussed and compared in respect to their advantages and limitations. In addition, AI-enabled mobile applications for rice disease detection have been discussed.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109639"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624017974","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent times, various researchers attempted to develop artificial intelligence (AI) assisted techniques in the field of agriculture for early detection, surveillance and treatment related to plant leaf, seed, root, and stem diseases. Rice leaf disease detection is one of such important areas, where the crop is frequently affected by various diseases. Farmer inspects usually at a later stage causing enormous damage. This manual inspection is subjective, time-consuming and error prone. Under such situation, AI-enabled tools and techniques play crucial role for early and more precise prediction of rice diseases.
This paper demonstrates a comprehensive review on application of AI-assisted rice leaf disease detection in the last two decades. Research studies were searched using relevant keywords through the online databases [PubMed: 246; Science Direct: 100; Scopus: 56; Web of Science: 8; Willey online library:16; Cochrane:0; Cross references:20]. A total of 446 titles and abstracts were identified as suitable for this study and finally, 48 most-appropriate state-of-art articles were considered. Furthermore, this study summarizes the visual characteristics of rice leaf diseases, imaging modalities and image acquisition techniques. Various image processing techniques for infected leaf area segmentation and feature extraction were also summarized. Finally, the reported machine learning (ML) algorithms were discussed and compared in respect to their advantages and limitations. In addition, AI-enabled mobile applications for rice disease detection have been discussed.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.