Mohd Zaidi Mohd Tumari , Mohd Ashraf Ahmad , Mohd Riduwan Ghazali , Mohd Helmi Suid
{"title":"Optimizing PID controller parameters for robust automatic voltage regulator system through indirect design approach-2","authors":"Mohd Zaidi Mohd Tumari , Mohd Ashraf Ahmad , Mohd Riduwan Ghazali , Mohd Helmi Suid","doi":"10.1016/j.gloei.2024.10.009","DOIUrl":null,"url":null,"abstract":"<div><div>Automatic voltage regulators (AVR) are designed to manipulate a synchronous generator’s voltage level automatically. Proportional integral derivative (PID) controllers are typically used in AVR systems to regulate voltage. Although advanced PID tuning methods have been proposed, the actual voltage response differs from the theoretical predictions due to modeling errors and system uncertainties. This requires continuous fine tuning of the PID parameters. However, manual adjustment of these parameters can compromise the stability and robustness of the AVR system. This study focuses on the online self-tuning of PID controllers called indirect design approach-2 (IDA-2) in AVR systems while preserving robustness. In particular, we indirectly tune the PID controller by shifting the frequency response. The new PID parameters depend on the frequency-shifting constant and the previously optimized PID parameters. Adjusting the frequency-shifting constant modifies all the PID parameters simultaneously, thereby improving the control performance and robustness. We evaluate the robustness of the proposed online PID tuning method by comparing the gain margins (GMs) and phase margins (PMs) with previously optimized PID parameters during parameter uncertainties. The proposed method is further evaluated in terms of disturbance rejection, measurement noise, and frequency response analysis during parameter uncertainty calculations against existing methods. Simulations show that the proposed method significantly improves the robustness of the controller in the AVR system. In summary, online self-tuning enables automated PID parameter adjustment in an AVR system, while maintaining stability and robustness.</div></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":"7 5","pages":"Pages 682-696"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096511724000902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic voltage regulators (AVR) are designed to manipulate a synchronous generator’s voltage level automatically. Proportional integral derivative (PID) controllers are typically used in AVR systems to regulate voltage. Although advanced PID tuning methods have been proposed, the actual voltage response differs from the theoretical predictions due to modeling errors and system uncertainties. This requires continuous fine tuning of the PID parameters. However, manual adjustment of these parameters can compromise the stability and robustness of the AVR system. This study focuses on the online self-tuning of PID controllers called indirect design approach-2 (IDA-2) in AVR systems while preserving robustness. In particular, we indirectly tune the PID controller by shifting the frequency response. The new PID parameters depend on the frequency-shifting constant and the previously optimized PID parameters. Adjusting the frequency-shifting constant modifies all the PID parameters simultaneously, thereby improving the control performance and robustness. We evaluate the robustness of the proposed online PID tuning method by comparing the gain margins (GMs) and phase margins (PMs) with previously optimized PID parameters during parameter uncertainties. The proposed method is further evaluated in terms of disturbance rejection, measurement noise, and frequency response analysis during parameter uncertainty calculations against existing methods. Simulations show that the proposed method significantly improves the robustness of the controller in the AVR system. In summary, online self-tuning enables automated PID parameter adjustment in an AVR system, while maintaining stability and robustness.