Optimizing PID controller parameters for robust automatic voltage regulator system through indirect design approach-2

IF 1.9 Q4 ENERGY & FUELS
Mohd Zaidi Mohd Tumari , Mohd Ashraf Ahmad , Mohd Riduwan Ghazali , Mohd Helmi Suid
{"title":"Optimizing PID controller parameters for robust automatic voltage regulator system through indirect design approach-2","authors":"Mohd Zaidi Mohd Tumari ,&nbsp;Mohd Ashraf Ahmad ,&nbsp;Mohd Riduwan Ghazali ,&nbsp;Mohd Helmi Suid","doi":"10.1016/j.gloei.2024.10.009","DOIUrl":null,"url":null,"abstract":"<div><div>Automatic voltage regulators (AVR) are designed to manipulate a synchronous generator’s voltage level automatically. Proportional integral derivative (PID) controllers are typically used in AVR systems to regulate voltage. Although advanced PID tuning methods have been proposed, the actual voltage response differs from the theoretical predictions due to modeling errors and system uncertainties. This requires continuous fine tuning of the PID parameters. However, manual adjustment of these parameters can compromise the stability and robustness of the AVR system. This study focuses on the online self-tuning of PID controllers called indirect design approach-2 (IDA-2) in AVR systems while preserving robustness. In particular, we indirectly tune the PID controller by shifting the frequency response. The new PID parameters depend on the frequency-shifting constant and the previously optimized PID parameters. Adjusting the frequency-shifting constant modifies all the PID parameters simultaneously, thereby improving the control performance and robustness. We evaluate the robustness of the proposed online PID tuning method by comparing the gain margins (GMs) and phase margins (PMs) with previously optimized PID parameters during parameter uncertainties. The proposed method is further evaluated in terms of disturbance rejection, measurement noise, and frequency response analysis during parameter uncertainty calculations against existing methods. Simulations show that the proposed method significantly improves the robustness of the controller in the AVR system. In summary, online self-tuning enables automated PID parameter adjustment in an AVR system, while maintaining stability and robustness.</div></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":"7 5","pages":"Pages 682-696"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096511724000902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic voltage regulators (AVR) are designed to manipulate a synchronous generator’s voltage level automatically. Proportional integral derivative (PID) controllers are typically used in AVR systems to regulate voltage. Although advanced PID tuning methods have been proposed, the actual voltage response differs from the theoretical predictions due to modeling errors and system uncertainties. This requires continuous fine tuning of the PID parameters. However, manual adjustment of these parameters can compromise the stability and robustness of the AVR system. This study focuses on the online self-tuning of PID controllers called indirect design approach-2 (IDA-2) in AVR systems while preserving robustness. In particular, we indirectly tune the PID controller by shifting the frequency response. The new PID parameters depend on the frequency-shifting constant and the previously optimized PID parameters. Adjusting the frequency-shifting constant modifies all the PID parameters simultaneously, thereby improving the control performance and robustness. We evaluate the robustness of the proposed online PID tuning method by comparing the gain margins (GMs) and phase margins (PMs) with previously optimized PID parameters during parameter uncertainties. The proposed method is further evaluated in terms of disturbance rejection, measurement noise, and frequency response analysis during parameter uncertainty calculations against existing methods. Simulations show that the proposed method significantly improves the robustness of the controller in the AVR system. In summary, online self-tuning enables automated PID parameter adjustment in an AVR system, while maintaining stability and robustness.
通过间接设计方法优化稳健型自动电压调节器系统的 PID 控制器参数-2
自动电压调节器(AVR)旨在自动控制同步发电机的电压水平。自动电压调节器系统通常使用比例积分导数(PID)控制器来调节电压。虽然已经提出了先进的 PID 调节方法,但由于建模误差和系统不确定性,实际电压响应与理论预测值存在差异。这就需要对 PID 参数进行持续微调。然而,手动调整这些参数会影响 AVR 系统的稳定性和鲁棒性。本研究的重点是在 AVR 系统中对 PID 控制器进行在线自调整(称为间接设计方法-2 (IDA-2)),同时保持鲁棒性。具体而言,我们通过移动频率响应来间接调整 PID 控制器。新的 PID 参数取决于移频常数和先前优化的 PID 参数。调整移频常数可同时修改所有 PID 参数,从而提高控制性能和鲁棒性。我们通过比较参数不确定时的增益裕度(GMs)和相位裕度(PMs)与先前优化的 PID 参数,来评估所提出的在线 PID 调节方法的鲁棒性。在参数不确定性计算期间,还从干扰抑制、测量噪声和频率响应分析等方面进一步评估了拟议方法与现有方法的比较。模拟结果表明,所提出的方法显著提高了 AVR 系统中控制器的鲁棒性。总之,在线自整定实现了 AVR 系统中 PID 参数的自动调整,同时保持了稳定性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Energy Interconnection
Global Energy Interconnection Engineering-Automotive Engineering
CiteScore
5.70
自引率
0.00%
发文量
985
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信