{"title":"Interpretable A-posteriori error indication for graph neural network surrogate models","authors":"Shivam Barwey , Hojin Kim , Romit Maulik","doi":"10.1016/j.cma.2024.117509","DOIUrl":null,"url":null,"abstract":"<div><div>Data-driven surrogate modeling has surged in capability in recent years with the emergence of graph neural networks (GNNs), which can operate directly on mesh-based representations of data. The goal of this work is to introduce an interpretability enhancement procedure for GNNs, with application to unstructured mesh-based fluid dynamics modeling. Given a black-box baseline GNN model, the end result is an interpretable GNN model that isolates regions in physical space, corresponding to sub-graphs, that are intrinsically linked to the forecasting task while retaining the predictive capability of the baseline. These structures identified by the interpretable GNNs are adaptively produced in the forward pass and serve as explainable links between the baseline model architecture, the optimization goal, and known problem-specific physics. Additionally, through a regularization procedure, the interpretable GNNs can also be used to identify, during inference, graph nodes that correspond to a majority of the anticipated forecasting error, adding a novel interpretable error-tagging capability to baseline models. Demonstrations are performed using unstructured flow field data sourced from flow over a backward-facing step at high Reynolds numbers, with geometry extrapolations demonstrated for ramp and wall-mounted cube configurations.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"433 ","pages":"Article 117509"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524007631","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Data-driven surrogate modeling has surged in capability in recent years with the emergence of graph neural networks (GNNs), which can operate directly on mesh-based representations of data. The goal of this work is to introduce an interpretability enhancement procedure for GNNs, with application to unstructured mesh-based fluid dynamics modeling. Given a black-box baseline GNN model, the end result is an interpretable GNN model that isolates regions in physical space, corresponding to sub-graphs, that are intrinsically linked to the forecasting task while retaining the predictive capability of the baseline. These structures identified by the interpretable GNNs are adaptively produced in the forward pass and serve as explainable links between the baseline model architecture, the optimization goal, and known problem-specific physics. Additionally, through a regularization procedure, the interpretable GNNs can also be used to identify, during inference, graph nodes that correspond to a majority of the anticipated forecasting error, adding a novel interpretable error-tagging capability to baseline models. Demonstrations are performed using unstructured flow field data sourced from flow over a backward-facing step at high Reynolds numbers, with geometry extrapolations demonstrated for ramp and wall-mounted cube configurations.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.