Andrea Pulella , Francescopaolo Sica , Carlos Villamil Lopez , Harald Anglberger , Ronny Hänsch
{"title":"Generalization in deep learning-based aircraft classification for SAR imagery","authors":"Andrea Pulella , Francescopaolo Sica , Carlos Villamil Lopez , Harald Anglberger , Ronny Hänsch","doi":"10.1016/j.isprsjprs.2024.10.030","DOIUrl":null,"url":null,"abstract":"<div><div>Automatic Target Recognition (ATR) from Synthetic Aperture Radar (SAR) data covers a wide range of applications. SAR ATR helps to detect and track vehicles and other objects, e.g. in disaster relief and surveillance operations. Aircraft classification covers a significant part of this research area, which differs from other SAR-based ATR tasks, such as ship and ground vehicle detection and classification, in that aircrafts are usually a static target, often remaining at the same location and in a given orientation for longer time frames. Today, there is a significant mismatch between the abundance of deep learning-based aircraft classification models and the availability of corresponding datasets. This mismatch has led to models with improved classification performance on specific datasets, but the challenge of generalizing to conditions not present in the training data (which are expected to occur in operational conditions) has not yet been satisfactorily analyzed. This paper aims to evaluate how classification performance and generalization capabilities of deep learning models are influenced by the diversity of the training dataset. Our goal is to understand the model’s competence and the conditions under which it can achieve proficiency in aircraft classification tasks for high-resolution SAR images while demonstrating generalization capabilities when confronted with novel data that include different geographic locations, environmental conditions, and geometric variations. We address this gap by using manually annotated high-resolution SAR data from TerraSAR-X and TanDEM-X and show how the classification performance changes for different application scenarios requiring different training and evaluation setups. We find that, as expected, the type of aircraft plays a crucial role in the classification problem, since it will vary in shape and dimension. However, these aspects are secondary to how the SAR image is acquired, with the acquisition geometry playing the primary role. Therefore, we find that the characteristics of the acquisition are much more relevant for generalization than the complex geometry of the target. We show this for various models selected among the standard classification algorithms.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 312-323"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624004076","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic Target Recognition (ATR) from Synthetic Aperture Radar (SAR) data covers a wide range of applications. SAR ATR helps to detect and track vehicles and other objects, e.g. in disaster relief and surveillance operations. Aircraft classification covers a significant part of this research area, which differs from other SAR-based ATR tasks, such as ship and ground vehicle detection and classification, in that aircrafts are usually a static target, often remaining at the same location and in a given orientation for longer time frames. Today, there is a significant mismatch between the abundance of deep learning-based aircraft classification models and the availability of corresponding datasets. This mismatch has led to models with improved classification performance on specific datasets, but the challenge of generalizing to conditions not present in the training data (which are expected to occur in operational conditions) has not yet been satisfactorily analyzed. This paper aims to evaluate how classification performance and generalization capabilities of deep learning models are influenced by the diversity of the training dataset. Our goal is to understand the model’s competence and the conditions under which it can achieve proficiency in aircraft classification tasks for high-resolution SAR images while demonstrating generalization capabilities when confronted with novel data that include different geographic locations, environmental conditions, and geometric variations. We address this gap by using manually annotated high-resolution SAR data from TerraSAR-X and TanDEM-X and show how the classification performance changes for different application scenarios requiring different training and evaluation setups. We find that, as expected, the type of aircraft plays a crucial role in the classification problem, since it will vary in shape and dimension. However, these aspects are secondary to how the SAR image is acquired, with the acquisition geometry playing the primary role. Therefore, we find that the characteristics of the acquisition are much more relevant for generalization than the complex geometry of the target. We show this for various models selected among the standard classification algorithms.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.