Shaokun Guo , Jie Dong , Yian Wang , Mingsheng Liao
{"title":"Fast and accurate SAR geocoding with a plane approximation","authors":"Shaokun Guo , Jie Dong , Yian Wang , Mingsheng Liao","doi":"10.1016/j.isprsjprs.2024.10.031","DOIUrl":null,"url":null,"abstract":"<div><div>Geocoding is the procedure of finding the mapping between the Synthetic Aperture Radar (SAR) image and the imaged scene. The inverse form of the Range-Doppler (RD) model has been adopted to approximate the geocoding results. However, with advances in SAR imaging geodesy, its imprecise nature becomes more perceptible. The forward RD model gives reliable solutions but is time-consuming and unable to detect geometric distortions. This study proposes a highly optimized forward geocoding method to find the precise ground position of each image sample with a Digital Elevation Model (DEM). By following the intersection of the terrain and the so-called solution surface of an azimuth line, which can be locally approximated by a plane, it produces geo-location results almost identical to the analytical solutions of the RD model. At the same time, the non-unique geocoding solutions and the geometric distortions are determined. Deviations from the employed approximations are assessed, showing that they are highly predictable and lead to negligible range/azimuth residuals. The general robustness is verified by experiments on SAR images of different resolutions covering diversified terrains in the native or zero Doppler geometry. Comparisons with other forward algorithms demonstrate that, with extra geometric distortions detection ability, its accuracy and efficiency are comparable to them. For a Sentinel-1 IW burst of high topographic relief, the algorithm ends in a 3 s using 16 parallel cores, with an average residual smaller than one millimeter. Its impressive blend of efficiency, accuracy, and geometric distortion detection capabilities makes it ideal for large-scale remote sensing applications.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 344-360"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624004088","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Geocoding is the procedure of finding the mapping between the Synthetic Aperture Radar (SAR) image and the imaged scene. The inverse form of the Range-Doppler (RD) model has been adopted to approximate the geocoding results. However, with advances in SAR imaging geodesy, its imprecise nature becomes more perceptible. The forward RD model gives reliable solutions but is time-consuming and unable to detect geometric distortions. This study proposes a highly optimized forward geocoding method to find the precise ground position of each image sample with a Digital Elevation Model (DEM). By following the intersection of the terrain and the so-called solution surface of an azimuth line, which can be locally approximated by a plane, it produces geo-location results almost identical to the analytical solutions of the RD model. At the same time, the non-unique geocoding solutions and the geometric distortions are determined. Deviations from the employed approximations are assessed, showing that they are highly predictable and lead to negligible range/azimuth residuals. The general robustness is verified by experiments on SAR images of different resolutions covering diversified terrains in the native or zero Doppler geometry. Comparisons with other forward algorithms demonstrate that, with extra geometric distortions detection ability, its accuracy and efficiency are comparable to them. For a Sentinel-1 IW burst of high topographic relief, the algorithm ends in a 3 s using 16 parallel cores, with an average residual smaller than one millimeter. Its impressive blend of efficiency, accuracy, and geometric distortion detection capabilities makes it ideal for large-scale remote sensing applications.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.