Ruilong Wei , Yamei Li , Yao Li , Bo Zhang , Jiao Wang , Chunhao Wu , Shunyu Yao , Chengming Ye
{"title":"A universal adapter in segmentation models for transferable landslide mapping","authors":"Ruilong Wei , Yamei Li , Yao Li , Bo Zhang , Jiao Wang , Chunhao Wu , Shunyu Yao , Chengming Ye","doi":"10.1016/j.isprsjprs.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient landslide mapping is crucial for disaster mitigation and relief. Recently, deep learning methods have shown promising results in landslide mapping using satellite imagery. However, the sample sparsity and geographic diversity of landslides have challenged the transferability of deep learning models. In this paper, we proposed a universal adapter module that can be seamlessly embedded into existing segmentation models for transferable landslide mapping. The adapter can achieve high-accuracy cross-regional landslide segmentation with a small sample set, requiring minimal parameter adjustments. In detail, the pre-trained baseline model freezes its parameters to keep learned knowledge of the source domain, while the lightweight adapter fine-tunes only a few parameters to learn new landslide features of the target domain. Structurally, we introduced an attention mechanism to enhance the feature extraction of the adapter. To validate the proposed adapter module, 4321 landslide samples were prepared, and the Segment Anything Model (SAM) and other baseline models, along with four transfer strategies were selected for controlled experiments. In addition, Sentinel-2 satellite imagery in the Himalayas and Hengduan Mountains, located on the southern and southeastern edges of the Tibetan Plateau was collected for evaluation. The controlled experiments reported that SAM, when combined with our adapter module, achieved a peak mean Intersection over Union (mIoU) of 82.3 %. For other baseline models, integrating the adapter improved mIoU by 2.6 % to 12.9 % compared with traditional strategies on cross-regional landslide mapping. In particular, baseline models with Transformers are more suitable for fine-tuning parameters. Furthermore, the visualized feature maps revealed that fine-tuning shallow encoders can achieve better effects in model transfer. Besides, the proposed adapter can effectively extract landslide features and focus on specific spatial and channel domains with significant features. We also quantified the spectral, scale, and shape features of landslides and analyzed their impacts on segmentation results. Our analysis indicated that weak spectral differences, as well as extreme scale and edge shapes are detrimental to the accuracy of landslide segmentation. Overall, this adapter module provides a new perspective for large-scale transferable landslide mapping.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 446-465"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624004143","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient landslide mapping is crucial for disaster mitigation and relief. Recently, deep learning methods have shown promising results in landslide mapping using satellite imagery. However, the sample sparsity and geographic diversity of landslides have challenged the transferability of deep learning models. In this paper, we proposed a universal adapter module that can be seamlessly embedded into existing segmentation models for transferable landslide mapping. The adapter can achieve high-accuracy cross-regional landslide segmentation with a small sample set, requiring minimal parameter adjustments. In detail, the pre-trained baseline model freezes its parameters to keep learned knowledge of the source domain, while the lightweight adapter fine-tunes only a few parameters to learn new landslide features of the target domain. Structurally, we introduced an attention mechanism to enhance the feature extraction of the adapter. To validate the proposed adapter module, 4321 landslide samples were prepared, and the Segment Anything Model (SAM) and other baseline models, along with four transfer strategies were selected for controlled experiments. In addition, Sentinel-2 satellite imagery in the Himalayas and Hengduan Mountains, located on the southern and southeastern edges of the Tibetan Plateau was collected for evaluation. The controlled experiments reported that SAM, when combined with our adapter module, achieved a peak mean Intersection over Union (mIoU) of 82.3 %. For other baseline models, integrating the adapter improved mIoU by 2.6 % to 12.9 % compared with traditional strategies on cross-regional landslide mapping. In particular, baseline models with Transformers are more suitable for fine-tuning parameters. Furthermore, the visualized feature maps revealed that fine-tuning shallow encoders can achieve better effects in model transfer. Besides, the proposed adapter can effectively extract landslide features and focus on specific spatial and channel domains with significant features. We also quantified the spectral, scale, and shape features of landslides and analyzed their impacts on segmentation results. Our analysis indicated that weak spectral differences, as well as extreme scale and edge shapes are detrimental to the accuracy of landslide segmentation. Overall, this adapter module provides a new perspective for large-scale transferable landslide mapping.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.