Zeyuan Yan , Yuren Zhou , Xiaoyu He , Chupeng Su , Weigang Wu
{"title":"High-dimensional expensive optimization by Kriging-assisted multiobjective evolutionary algorithm with dimensionality reduction","authors":"Zeyuan Yan , Yuren Zhou , Xiaoyu He , Chupeng Su , Weigang Wu","doi":"10.1016/j.ins.2024.121620","DOIUrl":null,"url":null,"abstract":"<div><div>Surrogate-assisted multi-objective evolutionary algorithms (SA-MOEAs) have made significant progress in solving expensive multi- and many-objective optimization problems. However, most of them perform well in low-dimensional settings but often struggle with high-dimensional problems. The main reason is that some techniques used in SA-MOEAs, like the Kriging model, are ineffective in exploring high-dimensional search spaces. As a result, this research investigates frameworks incorporating dimensionality reduction techniques to conduct modeling and optimization tasks on dimensionality reduction decision spaces. This article uses a singular value decomposition method to map the high-dimensional decision space into a low-dimensional one, then employs a feature fusion strategy to combine low-dimensional features with high-dimensional ones for better representation. Subsequently, these low-dimensional features are used to train the Kriging-based surrogates to select promising solutions within a limited number of function evaluations. In addition, this article provides two types of evolutionary modes to balance exploration and exploitation. Experimental results demonstrate the effectiveness of the proposed SA-MOEA compared to several state-of-the-art algorithms.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"691 ","pages":"Article 121620"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015342","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Surrogate-assisted multi-objective evolutionary algorithms (SA-MOEAs) have made significant progress in solving expensive multi- and many-objective optimization problems. However, most of them perform well in low-dimensional settings but often struggle with high-dimensional problems. The main reason is that some techniques used in SA-MOEAs, like the Kriging model, are ineffective in exploring high-dimensional search spaces. As a result, this research investigates frameworks incorporating dimensionality reduction techniques to conduct modeling and optimization tasks on dimensionality reduction decision spaces. This article uses a singular value decomposition method to map the high-dimensional decision space into a low-dimensional one, then employs a feature fusion strategy to combine low-dimensional features with high-dimensional ones for better representation. Subsequently, these low-dimensional features are used to train the Kriging-based surrogates to select promising solutions within a limited number of function evaluations. In addition, this article provides two types of evolutionary modes to balance exploration and exploitation. Experimental results demonstrate the effectiveness of the proposed SA-MOEA compared to several state-of-the-art algorithms.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.