Antagonistic-information-dependent integral-type event-trigger scheme for bipartite synchronization of cooperative-competitive neural networks and its application
IF 8.1 1区 计算机科学0 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"Antagonistic-information-dependent integral-type event-trigger scheme for bipartite synchronization of cooperative-competitive neural networks and its application","authors":"Xindong Si , Yingjie Fan , Zhen Wang","doi":"10.1016/j.ins.2024.121617","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the bipartite synchronization problem for cooperative-competitive neural networks (CCNNs) by using an antagonistic-information-dependent integral-type event-trigger scheme. Here, the designed antagonistic-information implies that both the cooperation and competition interactions of CCNNs are utilized to design trigger scheme. First, the signed digraph theory, in the presence of structurally balanced topology, is used to describe the antagonistic interactions among neuron nodes. On this basis, such a trigger scheme consisting of antagonistic-information and integral term is proposed to relax communication burden, which can remember the evolution information of CCNNs dynamic process. Meanwhile, the discontinuity of event-triggered scheme can avoid the occurrence of Zeno behavior directly without complicated mathematical analysis. Then, an important lemma is derived to facilitate bipartite synchronization problem. By constructing appropriate Lyapunov function, two novel bipartite synchronization criteria are developed by utilizing the hybrid Lyapunov theories, new lemma, and inequality techniques. At last, an application and an effective example are presented to illustrate the validity and advantage of the proposed method.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"691 ","pages":"Article 121617"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015317","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the bipartite synchronization problem for cooperative-competitive neural networks (CCNNs) by using an antagonistic-information-dependent integral-type event-trigger scheme. Here, the designed antagonistic-information implies that both the cooperation and competition interactions of CCNNs are utilized to design trigger scheme. First, the signed digraph theory, in the presence of structurally balanced topology, is used to describe the antagonistic interactions among neuron nodes. On this basis, such a trigger scheme consisting of antagonistic-information and integral term is proposed to relax communication burden, which can remember the evolution information of CCNNs dynamic process. Meanwhile, the discontinuity of event-triggered scheme can avoid the occurrence of Zeno behavior directly without complicated mathematical analysis. Then, an important lemma is derived to facilitate bipartite synchronization problem. By constructing appropriate Lyapunov function, two novel bipartite synchronization criteria are developed by utilizing the hybrid Lyapunov theories, new lemma, and inequality techniques. At last, an application and an effective example are presented to illustrate the validity and advantage of the proposed method.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.