Zhifei Li , Lifan Chen , Yue Jian , Han Wang , Yue Zhao , Miao Zhang , Kui Xiao , Yan Zhang , Honglian Deng , Xiaoju Hou
{"title":"Aggregation or separation? Adaptive embedding message passing for knowledge graph completion","authors":"Zhifei Li , Lifan Chen , Yue Jian , Han Wang , Yue Zhao , Miao Zhang , Kui Xiao , Yan Zhang , Honglian Deng , Xiaoju Hou","doi":"10.1016/j.ins.2024.121639","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge graph completion intends to infer information within knowledge graphs, thereby bolstering the functionality of knowledge-driven applications. Recently, there has been a significant increase in the utilization of graph convolutional networks (GCNs) for knowledge graph completion. These GCN-based models primarily focus on aggregating information from neighboring entities and relations. Nonetheless, a fundamental question arises: is it beneficial to consider all neighbor information, and should some neighbor features be separated? We tackle this issue and present an adaptive graph convolutional network (AdaGCN) for knowledge graph completion, which can adaptively aggregate or separate neighbor information for knowledge embedding learning. Specifically, AdaGCN utilizes the adaptive message-passing mechanism to determine the importance of each relation, allocating weights to neighbor entity embeddings. This adaptive approach facilitates the propagation of valuable information while effectively separating less relevant or unnecessary details. Experimental results demonstrate that AdaGCN can efficiently acquire the embeddings of various triplets within knowledge graphs, and it achieves competitive performance compared to SOTA models on six datasets for the tasks of knowledge graph completion.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"691 ","pages":"Article 121639"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015536","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge graph completion intends to infer information within knowledge graphs, thereby bolstering the functionality of knowledge-driven applications. Recently, there has been a significant increase in the utilization of graph convolutional networks (GCNs) for knowledge graph completion. These GCN-based models primarily focus on aggregating information from neighboring entities and relations. Nonetheless, a fundamental question arises: is it beneficial to consider all neighbor information, and should some neighbor features be separated? We tackle this issue and present an adaptive graph convolutional network (AdaGCN) for knowledge graph completion, which can adaptively aggregate or separate neighbor information for knowledge embedding learning. Specifically, AdaGCN utilizes the adaptive message-passing mechanism to determine the importance of each relation, allocating weights to neighbor entity embeddings. This adaptive approach facilitates the propagation of valuable information while effectively separating less relevant or unnecessary details. Experimental results demonstrate that AdaGCN can efficiently acquire the embeddings of various triplets within knowledge graphs, and it achieves competitive performance compared to SOTA models on six datasets for the tasks of knowledge graph completion.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.