Distributed hybrid flowshop scheduling with consistent sublots under delivery time windows: A penalty lot-assisted iterated greedy algorithm

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jinli Liu , Yuyan Han , Yuting Wang , Yiping Liu , Biao Zhang
{"title":"Distributed hybrid flowshop scheduling with consistent sublots under delivery time windows: A penalty lot-assisted iterated greedy algorithm","authors":"Jinli Liu ,&nbsp;Yuyan Han ,&nbsp;Yuting Wang ,&nbsp;Yiping Liu ,&nbsp;Biao Zhang","doi":"10.1016/j.eij.2024.100566","DOIUrl":null,"url":null,"abstract":"<div><div>Integrating the delivery time windows into the distributed hybrid flow shop scheduling contributes to ensuring the timely delivery of products and enhancing customer satisfaction. In view of this, this study focuses on distributed hybrid flowshop scheduling with consistent sublots under the delivery time windows constraint, denoted as <span><math><mrow><mi>DH</mi><msub><mi>F</mi><mi>m</mi></msub><mrow><mo>|</mo><msub><mrow><mi>lot</mi></mrow><mrow><mi>cs</mi></mrow></msub><mo>|</mo></mrow><mi>ε</mi><mrow><mfenced><mrow><mi>T</mi><mi>W</mi><mi>E</mi><mi>T</mi><mo>/</mo><mi>D</mi><mi>T</mi><mi>W</mi></mrow></mfenced></mrow></mrow></math></span>. However, there exist some challenges of problem model modeling and algorithmic design for the problem to be addressed. Therefore, we first construct a mixed integer linear programming (MILP) model tailored to <span><math><mrow><mi>DH</mi><msub><mi>F</mi><mi>m</mi></msub><mrow><mo>|</mo><msub><mrow><mi>lot</mi></mrow><mrow><mi>cs</mi></mrow></msub><mo>|</mo></mrow><mi>ε</mi><mrow><mfenced><mrow><mi>T</mi><mi>W</mi><mi>E</mi><mi>T</mi><mo>/</mo><mi>D</mi><mi>T</mi><mi>W</mi></mrow></mfenced></mrow></mrow></math></span> with the aim of minimizing the total weighted earliness and tardiness (<span><math><mrow><mi>TWET</mi></mrow></math></span>). Additionally, we introduce a penalty lot-assisted iterated greedy (<span><math><mrow><mi>P</mi><mi>L</mi><mi>_</mi><mi>I</mi><mi>G</mi><mi>_</mi><mi>I</mi><mi>T</mi><mi>I</mi></mrow></math></span>) and idle time insertion to coincide better with delivery time windows, in which a delivery-time-based multi-rule NEH, an adaptive insertion-based reconstruction based on the changing of the delivery status, a trilaminar penalty lot-assisted local search, and an elitist list-based acceptance criterion are designed to save convergence time and reduce the late deliveries attempts. Lastly, we also introduce a completely new method to generate delivery time windows and create 400 distinct instances. Based on the average results from five runs of 400 instances, <span><math><mrow><mi>P</mi><mi>L</mi><mi>_</mi><mi>I</mi><mi>G</mi><mi>_</mi><mi>I</mi><mi>T</mi><mi>I</mi></mrow></math></span> demonstrates improvements of 59.0 %, 72.3 %, 76.9 %, and 25.5 % compared to <span><math><mrow><mi>HIGT</mi></mrow></math></span>, <span><math><mrow><mi>DABC</mi></mrow></math></span>, <span><math><mrow><mi>CVND</mi></mrow></math></span>, and <span><math><mrow><mi>I</mi><mi>G</mi><mi>_</mi><mi>M</mi><mi>R</mi></mrow></math></span>, respectively. When considering the minimum values from each instance, <span><math><mrow><mi>P</mi><mi>L</mi><mi>_</mi><mi>I</mi><mi>G</mi><mi>_</mi><mi>I</mi><mi>T</mi><mi>I</mi></mrow></math></span> exhibits enhancements of 59.4 %, 71.8 %, 74.9 %, and 25.4 % over <span><math><mrow><mi>HIGT</mi></mrow></math></span>, <span><math><mrow><mi>DABC</mi></mrow></math></span>, <span><math><mrow><mi>CVND</mi></mrow></math></span>, and <span><math><mrow><mi>I</mi><mi>G</mi><mi>_</mi><mi>M</mi><mi>R</mi></mrow></math></span>, respectively, it evident that <span><math><mrow><mi>P</mi><mi>L</mi><mi>_</mi><mi>I</mi><mi>G</mi><mi>_</mi><mi>I</mi><mi>T</mi><mi>I</mi></mrow></math></span> can effectively solve <span><math><mrow><mi>DH</mi><msub><mi>F</mi><mi>m</mi></msub><mrow><mo>|</mo><msub><mrow><mi>lot</mi></mrow><mrow><mi>cs</mi></mrow></msub><mo>|</mo></mrow><mi>ε</mi><mrow><mfenced><mrow><mi>T</mi><mi>W</mi><mi>E</mi><mi>T</mi><mo>/</mo><mi>D</mi><mi>T</mi><mi>W</mi></mrow></mfenced></mrow></mrow></math></span>.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"28 ","pages":"Article 100566"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866524001294","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating the delivery time windows into the distributed hybrid flow shop scheduling contributes to ensuring the timely delivery of products and enhancing customer satisfaction. In view of this, this study focuses on distributed hybrid flowshop scheduling with consistent sublots under the delivery time windows constraint, denoted as DHFm|lotcs|εTWET/DTW. However, there exist some challenges of problem model modeling and algorithmic design for the problem to be addressed. Therefore, we first construct a mixed integer linear programming (MILP) model tailored to DHFm|lotcs|εTWET/DTW with the aim of minimizing the total weighted earliness and tardiness (TWET). Additionally, we introduce a penalty lot-assisted iterated greedy (PL_IG_ITI) and idle time insertion to coincide better with delivery time windows, in which a delivery-time-based multi-rule NEH, an adaptive insertion-based reconstruction based on the changing of the delivery status, a trilaminar penalty lot-assisted local search, and an elitist list-based acceptance criterion are designed to save convergence time and reduce the late deliveries attempts. Lastly, we also introduce a completely new method to generate delivery time windows and create 400 distinct instances. Based on the average results from five runs of 400 instances, PL_IG_ITI demonstrates improvements of 59.0 %, 72.3 %, 76.9 %, and 25.5 % compared to HIGT, DABC, CVND, and IG_MR, respectively. When considering the minimum values from each instance, PL_IG_ITI exhibits enhancements of 59.4 %, 71.8 %, 74.9 %, and 25.4 % over HIGT, DABC, CVND, and IG_MR, respectively, it evident that PL_IG_ITI can effectively solve DHFm|lotcs|εTWET/DTW.
交付时间窗口下具有一致子批次的分布式混合流水车间调度:罚分批次辅助迭代贪婪算法
将交货时间窗口纳入分布式混合流水车间调度有助于确保产品的及时交货和提高客户满意度。有鉴于此,本研究重点关注交货时间窗口约束下具有一致子批次的分布式混合流水车间调度,记为 DHFm|lotcs|εTWET/DTW。然而,该问题在模型建模和算法设计方面还存在一些挑战。因此,我们首先针对 DHFm|lotcs|εTWET/DTW,构建了一个混合整数线性规划(MILP)模型,目的是最小化总加权早到和迟到(TWET)。此外,我们还引入了罚分批次辅助迭代贪婪法(PL_IG_ITI)和空闲时间插入法,以更好地与交付时间窗口相吻合,其中基于交付时间的多规则 NEH、基于交付状态变化的自适应插入重构、三层罚分批次辅助局部搜索和基于精英列表的接受准则都是为了节省收敛时间和减少延迟交付尝试而设计的。最后,我们还引入了一种全新的方法来生成交货时间窗口并创建 400 个不同的实例。根据五次运行 400 个实例的平均结果,PL_IG_ITI 与 HIGT、DABC、CVND 和 IG_MR 相比,分别提高了 59.0%、72.3%、76.9% 和 25.5%。在考虑每个实例的最小值时,PL_IG_ITI 与 HIGT、DABC、CVND 和 IG_MR 相比,分别提高了 59.4 %、71.8 %、74.9 % 和 25.4 %,这表明 PL_IG_ITI 可以有效地求解 DHFm|lotcs|εTWET/DTW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信