Distributed Least Product Relative Error estimation for semi-parametric multiplicative regression with massive data

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yuhao Zou , Xiaohui Yuan , Tianqing Liu
{"title":"Distributed Least Product Relative Error estimation for semi-parametric multiplicative regression with massive data","authors":"Yuhao Zou ,&nbsp;Xiaohui Yuan ,&nbsp;Tianqing Liu","doi":"10.1016/j.ins.2024.121614","DOIUrl":null,"url":null,"abstract":"<div><div>Distributed systems have been widely used for massive data analysis, but few studies focus on multiplicative regression models. We consider a communication-efficient surrogate likelihood method using the Least Product Relative Error criterion for semi-parametric multiplicative models on massive datasets. The non-parametric component is efficiently handled via B-spline approximation. We derive the asymptotic properties for both parametric and non-parametric components, while the SCAD and adaptive Lasso penalty functions are developed and their oracle properties for variable selection are validated. Simulation studies and an application to an energy prediction dataset are used to demonstrate the effectiveness and practical utility of the proposed method.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"691 ","pages":"Article 121614"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015287","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed systems have been widely used for massive data analysis, but few studies focus on multiplicative regression models. We consider a communication-efficient surrogate likelihood method using the Least Product Relative Error criterion for semi-parametric multiplicative models on massive datasets. The non-parametric component is efficiently handled via B-spline approximation. We derive the asymptotic properties for both parametric and non-parametric components, while the SCAD and adaptive Lasso penalty functions are developed and their oracle properties for variable selection are validated. Simulation studies and an application to an energy prediction dataset are used to demonstrate the effectiveness and practical utility of the proposed method.
海量数据半参数乘法回归的分布式最小乘积相对误差估计
分布式系统已被广泛用于海量数据分析,但很少有研究关注乘法回归模型。我们考虑了一种通信效率高的代理似然法,该方法使用最小乘积相对误差准则,用于海量数据集上的半参数乘法模型。非参数部分通过 B-样条近似得到有效处理。我们推导了参数和非参数部分的渐近特性,同时开发了 SCAD 和自适应 Lasso 惩罚函数,并验证了它们在变量选择方面的 Oracle 特性。仿真研究和能源预测数据集应用证明了所提方法的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信