L.R.M. Toller-Nordström , O. Gavalda-Diaz , L. Gale , D.E.J. Armstrong , R.J. Nicholls
{"title":"Detailed study of interphase degradation in SiC/BN/SiC ceramic matrix composites after elevated temperature tensile testing","authors":"L.R.M. Toller-Nordström , O. Gavalda-Diaz , L. Gale , D.E.J. Armstrong , R.J. Nicholls","doi":"10.1016/j.jeurceramsoc.2024.117039","DOIUrl":null,"url":null,"abstract":"<div><div>Ceramic matrix composites of silicon carbide fibres in a silicon carbide matrix with boron nitride interphase are promising candidates for replacing superalloys in the hottest part of aerospace engines, reducing the need for cooling and increasing the fuel efficiency. This needs a thorough understanding of how these materials degrade under high levels of stress combined with high temperatures in an oxidative environment. This work presents a detailed investigation of the degradation in the interphase and surrounding interfaces. Advanced electron microscopy and electron energy loss spectroscopy are used to extract information on the degradation process. It was found that silica and boria form along with a migration of silica into the interphase. At 1000 °C the degradation along the surface leads to early fracture at the surface and eventually complete fracture of the composite, lower temperature allows for the oxidation to reach the centre of the sample before complete failure.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 4","pages":"Article 117039"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924009129","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ceramic matrix composites of silicon carbide fibres in a silicon carbide matrix with boron nitride interphase are promising candidates for replacing superalloys in the hottest part of aerospace engines, reducing the need for cooling and increasing the fuel efficiency. This needs a thorough understanding of how these materials degrade under high levels of stress combined with high temperatures in an oxidative environment. This work presents a detailed investigation of the degradation in the interphase and surrounding interfaces. Advanced electron microscopy and electron energy loss spectroscopy are used to extract information on the degradation process. It was found that silica and boria form along with a migration of silica into the interphase. At 1000 °C the degradation along the surface leads to early fracture at the surface and eventually complete fracture of the composite, lower temperature allows for the oxidation to reach the centre of the sample before complete failure.
碳化硅基体中的碳化硅纤维与氮化硼相间的陶瓷基复合材料有望在航空航天发动机最热的部分取代超合金,从而减少冷却需求并提高燃料效率。这就需要深入了解这些材料在氧化环境中如何在高应力和高温的双重作用下发生降解。这项研究对相间和周围界面的降解情况进行了详细调查。先进的电子显微镜和电子能量损失光谱被用来提取降解过程的信息。研究发现,二氧化硅和硼砂的形成伴随着二氧化硅向相间的迁移。在 1000 ° C 时,沿表面的降解导致表面早期断裂,最终复合材料完全断裂,而较低的温度可使氧化作用在完全破坏之前到达样品的中心。
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.