Stimulating band gap reduction of AZnF3 (A = Ga, In) perovskites under external pressure for improving optoelectronic performance

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Md Saiduzzaman , Khandaker Monower Hossain , Arpon Biswas , Safin Alam , Aldina Sultana , Tanjun Ahmed , Jahid Kabir Rony , Sohail Ahmad , Mst.A. Khatun , S.K. Mitro
{"title":"Stimulating band gap reduction of AZnF3 (A = Ga, In) perovskites under external pressure for improving optoelectronic performance","authors":"Md Saiduzzaman ,&nbsp;Khandaker Monower Hossain ,&nbsp;Arpon Biswas ,&nbsp;Safin Alam ,&nbsp;Aldina Sultana ,&nbsp;Tanjun Ahmed ,&nbsp;Jahid Kabir Rony ,&nbsp;Sohail Ahmad ,&nbsp;Mst.A. Khatun ,&nbsp;S.K. Mitro","doi":"10.1016/j.comptc.2024.114940","DOIUrl":null,"url":null,"abstract":"<div><div>This study extensively examines the influence of pressure on several physical characteristics of cubic halide perovskites AZnF<sub>3</sub> (A = Ga, In) in extreme conditions (up to 60 GPa hydrostatic pressure) via the use of the first principles approach. The reduction of the band gap of the chosen compounds under increasing pressure is comprehensively discussed through the band structure and density of states calculations. The strong hybridization between Ga-4p(In-5p) and F-2p states under pressure is responsible for lowering the electronic band gap. The ionic and covalent nature of Ga/In–F and Zn–F bonds, respectively, are confirmed by charge density mapping. The optical absorption shifts towards lower energy regions under pressure are advantageous for using AZnF<sub>3</sub> (A = Ga, In) in photovoltaic applications. Furthermore, the comprehensive optical study demonstrates that the compound synthesized under pressure exhibits greater suitability for use in optoelectronic devices compared to systems formed under zero-pressure conditions. Interestingly, the brittleness of GaZnF<sub>3</sub> is converted to ductile under the application of pressure.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1242 ","pages":"Article 114940"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X24004791","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study extensively examines the influence of pressure on several physical characteristics of cubic halide perovskites AZnF3 (A = Ga, In) in extreme conditions (up to 60 GPa hydrostatic pressure) via the use of the first principles approach. The reduction of the band gap of the chosen compounds under increasing pressure is comprehensively discussed through the band structure and density of states calculations. The strong hybridization between Ga-4p(In-5p) and F-2p states under pressure is responsible for lowering the electronic band gap. The ionic and covalent nature of Ga/In–F and Zn–F bonds, respectively, are confirmed by charge density mapping. The optical absorption shifts towards lower energy regions under pressure are advantageous for using AZnF3 (A = Ga, In) in photovoltaic applications. Furthermore, the comprehensive optical study demonstrates that the compound synthesized under pressure exhibits greater suitability for use in optoelectronic devices compared to systems formed under zero-pressure conditions. Interestingly, the brittleness of GaZnF3 is converted to ductile under the application of pressure.

Abstract Image

在外部压力作用下激发 AZnF3(A = Ga、In)包晶带隙减小以改善光电性能
本研究通过使用第一原理方法,广泛研究了在极端条件下(高达 60 GPa 静水压力)压力对立方卤化物包光体 AZnF3(A = Ga、In)若干物理特性的影响。通过能带结构和态密度计算,全面讨论了所选化合物在压力增加时能带隙的减小。在压力作用下,Ga-4p(In-5p)态和 F-2p 态之间的强杂化是降低电子带隙的原因。电荷密度图分别证实了 Ga/In-F 和 Zn-F 键的离子和共价性质。在压力作用下,光吸收向低能区转移,这有利于在光伏应用中使用 AZnF3(A = Ga、In)。此外,全面的光学研究表明,与在零压条件下形成的体系相比,在压力下合成的化合物更适合用于光电器件。有趣的是,在施加压力的情况下,GaZnF3 的脆性转变为延展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信