Camila Botin Francisco , Fernanda Franco Dourado , Cleverton de Souza Fernandes , Gisele de Freitas Gauze , Ernani Abicht Basso
{"title":"The role of intra and intermolecular interactions on the conformational dynamics of 2-halo-1-phenylpropanols: Structure and solvent effects","authors":"Camila Botin Francisco , Fernanda Franco Dourado , Cleverton de Souza Fernandes , Gisele de Freitas Gauze , Ernani Abicht Basso","doi":"10.1016/j.molstruc.2024.140493","DOIUrl":null,"url":null,"abstract":"<div><div>Experimental and theoretical <sup>3</sup><em>J</em><sub>H</sub><sub><img></sub><sub>H</sub> scalar coupling constants allowed the identification of the conformational landscape of <em>erythro</em> (<em>e</em>X) and <em>threo</em> (<em>t</em>X) 2-halo-1-phenylpropanols (halo = F, Cl, and Br). NMR scalar coupling constants captured dynamics of the O<img>C-C-X dihedral and OH rotameric states, in a dynamic and solvent-dependent equilibrium. The <em>erythro</em> series revealed a particular halogen-dependent equilibrium, which showed different sensitivity to the media, especially in acetone, where the <em>e</em>F populations were completely shifted. At the same time, <em>threo</em> showed a highly solvent-sensitive equilibrium. NBO calculations showed the importance of electron delocalization over steric and electrostatic effects to stabilize the preferred <em>synclinal</em> conformer in both diastereomers. A Principal Component Analysis (PCA) on the NBO stabilization energies pointed to a complex mixture of electronic delocalization happening simultaneously. Hyperconjugative interactions are significant, but they are not the only important effect. Non-covalent interactions were also identified through NCI surfaces. Hydrogen bonds and intramolecular C-X···π and C<img>H···π interactions were proved to act differently in the two diastereomers, affecting their equilibria in different ways. Nuclear Overhauser (NOE) NMR experiments point to an intramolecular C<img>H···π contact, while <sup>1</sup>H NMR of the aromatic hydrogens evidence an intermolecular effect of acetone and DMSO on the phenyl ring. DFT with explicit solvation shows a solvent shell favoring intermolecular C<img>H···π contacts, in agreement with the experiments. This thorough analysis revealed that intra- and intermolecular factors contribute to the preference for the <em>synclinal</em> conformer in the studied compounds.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1322 ","pages":"Article 140493"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024030011","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Experimental and theoretical 3JHH scalar coupling constants allowed the identification of the conformational landscape of erythro (eX) and threo (tX) 2-halo-1-phenylpropanols (halo = F, Cl, and Br). NMR scalar coupling constants captured dynamics of the OC-C-X dihedral and OH rotameric states, in a dynamic and solvent-dependent equilibrium. The erythro series revealed a particular halogen-dependent equilibrium, which showed different sensitivity to the media, especially in acetone, where the eF populations were completely shifted. At the same time, threo showed a highly solvent-sensitive equilibrium. NBO calculations showed the importance of electron delocalization over steric and electrostatic effects to stabilize the preferred synclinal conformer in both diastereomers. A Principal Component Analysis (PCA) on the NBO stabilization energies pointed to a complex mixture of electronic delocalization happening simultaneously. Hyperconjugative interactions are significant, but they are not the only important effect. Non-covalent interactions were also identified through NCI surfaces. Hydrogen bonds and intramolecular C-X···π and CH···π interactions were proved to act differently in the two diastereomers, affecting their equilibria in different ways. Nuclear Overhauser (NOE) NMR experiments point to an intramolecular CH···π contact, while 1H NMR of the aromatic hydrogens evidence an intermolecular effect of acetone and DMSO on the phenyl ring. DFT with explicit solvation shows a solvent shell favoring intermolecular CH···π contacts, in agreement with the experiments. This thorough analysis revealed that intra- and intermolecular factors contribute to the preference for the synclinal conformer in the studied compounds.
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.