A novel porous Zn-MOF based on binuclear metal clusters for fluorescence detection of Cr(VI) and adsorption of dyes

IF 4 2区 化学 Q2 CHEMISTRY, PHYSICAL
Yang-Tian Yan , Xu-Dong Fan , Jia-Lei Lu , Zheng-Hua Yang , Yi-Bo Zhang , Yun-Long Wu , Wen-Yan Zhang , Yao-Yu Wang
{"title":"A novel porous Zn-MOF based on binuclear metal clusters for fluorescence detection of Cr(VI) and adsorption of dyes","authors":"Yang-Tian Yan ,&nbsp;Xu-Dong Fan ,&nbsp;Jia-Lei Lu ,&nbsp;Zheng-Hua Yang ,&nbsp;Yi-Bo Zhang ,&nbsp;Yun-Long Wu ,&nbsp;Wen-Yan Zhang ,&nbsp;Yao-Yu Wang","doi":"10.1016/j.molstruc.2024.140553","DOIUrl":null,"url":null,"abstract":"<div><div>A novel <strong>Zn-MOF</strong>: {[Zn<sub>3</sub>(L)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>]·(H<sub>2</sub>O)<sub>3</sub>·(CH<sub>3</sub>CN)<sub>3</sub>}<sub>n</sub> was synthesized from tricarboxylate pyridine ligand 3-(2,4-dicarboxyphenyl) -4-carboxypyridine (H<sub>3</sub> L) under solvothermal conditions. <strong>Zn-MOF</strong> was a three-dimensional porous framework composed of binuclear metal cluster [Zn<sub>2</sub>(COO)<sub>3</sub> N] and a variety of metal oxygen chains. The fluorescence study of <strong>Zn-MOF</strong> indicated that the maximum emission peak is 449 nm (λex=335 nm), and it had varying degrees of quenching effect on Cr<sub>2</sub>O<sub>7</sub><sup>2−</sup>and CrO<sub>4</sub><sup>2−</sup> in water, the limits of detection are 4.29×10<sup>−4</sup> M and 9.19×10<sup>−5</sup> M, respectively. It also showed good recycling ability, which was a potential multi-functional anion fluorescence probe material. In addition, the dye adsorption and separation experiments of <strong>Zn-MOF</strong> showed that it can adsorb MB<sup>+</sup> and MG<sup>+</sup>, but almost no adsorption for MO<sup>−</sup>, and can effectively separate MB<sup>+</sup> and MG<sup>+</sup> from the mixed solution of MB<sup>+</sup>/MO<sup>−</sup> and MG<sup>+</sup>/MO<sup>−</sup>. It was a potential multi-functional material for the capacity to selectively separate cationic dyes from anionic and cationic mixed solutions, as well as selective recognition of Cr<sub>2</sub>O<sub>7</sub><sup>2−</sup>and CrO<sub>4</sub><sup>2−</sup>anions.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1322 ","pages":"Article 140553"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024030618","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel Zn-MOF: {[Zn3(L)2(H2O)4]·(H2O)3·(CH3CN)3}n was synthesized from tricarboxylate pyridine ligand 3-(2,4-dicarboxyphenyl) -4-carboxypyridine (H3 L) under solvothermal conditions. Zn-MOF was a three-dimensional porous framework composed of binuclear metal cluster [Zn2(COO)3 N] and a variety of metal oxygen chains. The fluorescence study of Zn-MOF indicated that the maximum emission peak is 449 nm (λex=335 nm), and it had varying degrees of quenching effect on Cr2O72−and CrO42− in water, the limits of detection are 4.29×10−4 M and 9.19×10−5 M, respectively. It also showed good recycling ability, which was a potential multi-functional anion fluorescence probe material. In addition, the dye adsorption and separation experiments of Zn-MOF showed that it can adsorb MB+ and MG+, but almost no adsorption for MO, and can effectively separate MB+ and MG+ from the mixed solution of MB+/MO and MG+/MO. It was a potential multi-functional material for the capacity to selectively separate cationic dyes from anionic and cationic mixed solutions, as well as selective recognition of Cr2O72−and CrO42−anions.

Abstract Image

基于双核金属团簇的新型多孔 Zn-MOF,用于荧光检测六价铬和吸附染料
新型 Zn-MOF: {[Zn3(L)2(H2O)4]-(H2O)3-(CH3CN)3}n 是由三羧酸吡啶配体 3-(2,4-二羧基苯基) -4- 羧基吡啶 (H3 L) 在溶热条件下合成的。Zn-MOF 是由双核金属团簇 [Zn2(COO)3 N] 和多种金属氧链组成的三维多孔框架。对 Zn-MOF 的荧光研究表明,其最大发射峰为 449 nm(λex=335 nm),对水中的 Cr2O72 和 CrO42- 有不同程度的淬灭作用,检测限分别为 4.29×10-4 M 和 9.19×10-5 M。它还表现出良好的回收能力,是一种潜在的多功能阴离子荧光探针材料。此外,Zn-MOF 的染料吸附和分离实验表明,它能吸附 MB+和 MG+,但几乎不吸附 MO-,并能从 MB+/MO-和 MG+/MO- 混合溶液中有效分离 MB+和 MG+。它具有从阴离子和阳离子混合溶液中选择性分离阳离子染料的能力,以及选择性识别 Cr2O72 和 CrO42 阴离子的能力,是一种潜在的多功能材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Structure
Journal of Molecular Structure 化学-物理化学
CiteScore
7.10
自引率
15.80%
发文量
2384
审稿时长
45 days
期刊介绍: The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including: • Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.) • Chemical intermediates • Molecules in excited states • Biological molecules • Polymers. The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example: • Infrared spectroscopy (mid, far, near) • Raman spectroscopy and non-linear Raman methods (CARS, etc.) • Electronic absorption spectroscopy • Optical rotatory dispersion and circular dichroism • Fluorescence and phosphorescence techniques • Electron spectroscopies (PES, XPS), EXAFS, etc. • Microwave spectroscopy • Electron diffraction • NMR and ESR spectroscopies • Mössbauer spectroscopy • X-ray crystallography • Charge Density Analyses • Computational Studies (supplementing experimental methods) We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信