Qianqian Xing , Xiaoliang Jia , Shiyu Jia , Yongqin Qi , Yuqi Wang , Yingxiong Wang , Xianglin Hou
{"title":"Precise synthesis of cyclopropyl methyl ketone via proton transfer of 5-chloro-2-pentanone driven by hydrogen bonds","authors":"Qianqian Xing , Xiaoliang Jia , Shiyu Jia , Yongqin Qi , Yuqi Wang , Yingxiong Wang , Xianglin Hou","doi":"10.1016/j.molstruc.2024.140564","DOIUrl":null,"url":null,"abstract":"<div><div>The traditional synthesis methods of cyclopropyl methyl ketone (CPMK) have some disadvantages such as low yield, slow reaction rate and unclear catalytic mechanism. To solve these problems, a new strategy is developed to synthesize CPMK from 5‑chloro-2-pentanone (CPE) using 1,8-diazabicyclo[5.4.0]undec‑7-ene (DBU). Experiment results show that the yield of CPMK reached a maximum of 96.5 % in DBU at 40 °C for 30min. The mechanism study shows that the hydrogen bond between DBU and CPE is the key to drive the deprotonation and cyclization of CPE. The hydrogen bond is formed between the N atom on C = N of DBU and the α-H on the methylene group associated with the carbonyl group on CPE. The catalyst DBU is converted into [DBUH]<sup>+</sup>Cl<sup>−</sup>, which can be reclaimed and recycled completely. The density functional theory (DFT) calculation confirmed the existence of molecular hydrogen bonds and proved that the hydrogen bond driving force is the key to the reaction. The hydrogen bond driven mechanism provides a new idea for the basic research of cyclization reaction.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1322 ","pages":"Article 140564"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024030722","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The traditional synthesis methods of cyclopropyl methyl ketone (CPMK) have some disadvantages such as low yield, slow reaction rate and unclear catalytic mechanism. To solve these problems, a new strategy is developed to synthesize CPMK from 5‑chloro-2-pentanone (CPE) using 1,8-diazabicyclo[5.4.0]undec‑7-ene (DBU). Experiment results show that the yield of CPMK reached a maximum of 96.5 % in DBU at 40 °C for 30min. The mechanism study shows that the hydrogen bond between DBU and CPE is the key to drive the deprotonation and cyclization of CPE. The hydrogen bond is formed between the N atom on C = N of DBU and the α-H on the methylene group associated with the carbonyl group on CPE. The catalyst DBU is converted into [DBUH]+Cl−, which can be reclaimed and recycled completely. The density functional theory (DFT) calculation confirmed the existence of molecular hydrogen bonds and proved that the hydrogen bond driving force is the key to the reaction. The hydrogen bond driven mechanism provides a new idea for the basic research of cyclization reaction.
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.