Adam M. Krajewski , Jonathan W. Siegel , Zi-Kui Liu
{"title":"Efficient structure-informed featurization and property prediction of ordered, dilute, and random atomic structures","authors":"Adam M. Krajewski , Jonathan W. Siegel , Zi-Kui Liu","doi":"10.1016/j.commatsci.2024.113495","DOIUrl":null,"url":null,"abstract":"<div><div>Structure-informed materials informatics is a rapidly evolving discipline of materials science relying on the featurization of atomic structures or configurations to construct vector, voxel, graph, graphlet, and other representations useful for machine learning prediction of properties, fingerprinting, and generative design. This work discusses how current featurizers typically perform redundant calculations and how their efficiency could be improved by considering (1) fundamentals of crystallographic (orbits) equivalency to optimize ordered structures and (2) representation-dependent equivalency to optimize dilute, doped, and defect structures with broken symmetry. It also discusses and contrasts ways of (3) approximating random solid solutions occupying arbitrary lattices under such representations. Efficiency improvements discussed in this work were implemented within <figure><img></figure> or <em>python toolset for Structure-Informed Property and Feature Engineering with Neural Networks</em> developed by authors since 2019 and shown to increase performance from 2 to 10 times for typical inputs. Throughout this work, the authors explicitly discuss how these advances can be applied to different kinds of similar tools in the community.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113495"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702562400716X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Structure-informed materials informatics is a rapidly evolving discipline of materials science relying on the featurization of atomic structures or configurations to construct vector, voxel, graph, graphlet, and other representations useful for machine learning prediction of properties, fingerprinting, and generative design. This work discusses how current featurizers typically perform redundant calculations and how their efficiency could be improved by considering (1) fundamentals of crystallographic (orbits) equivalency to optimize ordered structures and (2) representation-dependent equivalency to optimize dilute, doped, and defect structures with broken symmetry. It also discusses and contrasts ways of (3) approximating random solid solutions occupying arbitrary lattices under such representations. Efficiency improvements discussed in this work were implemented within or python toolset for Structure-Informed Property and Feature Engineering with Neural Networks developed by authors since 2019 and shown to increase performance from 2 to 10 times for typical inputs. Throughout this work, the authors explicitly discuss how these advances can be applied to different kinds of similar tools in the community.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.