Data-driven 2D grain growth microstructure prediction using deep learning and spectral graph theory

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
José Niño, Oliver K. Johnson
{"title":"Data-driven 2D grain growth microstructure prediction using deep learning and spectral graph theory","authors":"José Niño,&nbsp;Oliver K. Johnson","doi":"10.1016/j.commatsci.2024.113504","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present an alternative method to grain growth simulations. Traditional grain growth algorithms can be computationally expensive, especially when considering anisotropic grain boundary (GB) properties. The new Semi-Stochastic Grain Growth Prediction (SSGGP) model consists of two main components: a statistical evolution model that predicts the evolution of the GB network spectrum and a conditional diffusion model that generates grain growth morphologies at different time steps. These models are trained on a dataset Niño and Johnson (2024) that contains thousands of microstructures obtained from anisotropic grain growth simulations. We test the effectiveness of our model by comparing microstructure statistics (e.g., grain size distribution, orientation distribution function (ODF), misorientation distribution function (MDF), and GB energy distribution) with those obtained from grain growth simulations. The results indicate that the SSGGP model shows good agreement in terms of these statistics. Moreover, once trained, the SSGGP is almost ten times faster in obtaining the evolved state of a microstructure. We also find evidence for self-similarity of the GB network during steady-state normal anisotropic grain growth.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113504"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007250","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present an alternative method to grain growth simulations. Traditional grain growth algorithms can be computationally expensive, especially when considering anisotropic grain boundary (GB) properties. The new Semi-Stochastic Grain Growth Prediction (SSGGP) model consists of two main components: a statistical evolution model that predicts the evolution of the GB network spectrum and a conditional diffusion model that generates grain growth morphologies at different time steps. These models are trained on a dataset Niño and Johnson (2024) that contains thousands of microstructures obtained from anisotropic grain growth simulations. We test the effectiveness of our model by comparing microstructure statistics (e.g., grain size distribution, orientation distribution function (ODF), misorientation distribution function (MDF), and GB energy distribution) with those obtained from grain growth simulations. The results indicate that the SSGGP model shows good agreement in terms of these statistics. Moreover, once trained, the SSGGP is almost ten times faster in obtaining the evolved state of a microstructure. We also find evidence for self-similarity of the GB network during steady-state normal anisotropic grain growth.

Abstract Image

利用深度学习和谱图理论进行数据驱动的二维晶粒生长微观结构预测
在本文中,我们提出了一种晶粒生长模拟的替代方法。传统的晶粒生长算法计算成本高昂,尤其是在考虑各向异性的晶界(GB)特性时。新的半随机晶粒生长预测(SSGGP)模型由两个主要部分组成:一个是预测 GB 网络谱演变的统计演变模型,另一个是在不同时间步骤生成晶粒生长形态的条件扩散模型。这些模型是在 Niño 和 Johnson(2024 年)的数据集上训练的,该数据集包含数千个从各向异性晶粒生长模拟中获得的微观结构。我们通过比较微结构统计数据(如晶粒尺寸分布、取向分布函数(ODF)、错取向分布函数(MDF)和 GB 能量分布)与晶粒生长模拟获得的数据,检验了模型的有效性。结果表明,SSGGP 模型在这些统计数据方面显示出良好的一致性。此外,一旦经过训练,SSGGP 在获取微结构演化状态方面的速度几乎快十倍。我们还发现了稳态正常各向异性晶粒生长过程中 GB 网络自相似性的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信