{"title":"Lightweight privacy-preserving authenticated key agreements using physically unclonable functions for internet of drones","authors":"Tian-Fu Lee , Xiucai Ye , Wei-Jie Huang","doi":"10.1016/j.jisa.2024.103915","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet of Drones (IoD) means the cooperative collection and transmission of data by multiple drones in a cluster or decentralized way of working to decrease the energy consumption of mobile devices, increase overall performance, and reduce the cost of building infrastructure. It is widely applied in various fields, including environmental scouting and monitoring, emergency assistance and logistics transportation, etc. Recently, many related authentication schemes were proposed for IoD. Due to the limitation that the drones use lightweight components for development, these authentication schemes mostly use lightweight components for development. However, many authentication schemes cannot overcome security issues such as providing user privacy protection and resisting drone capture attacks. This study discusses these security issues of related schemes, and develops an authentication scheme for IoD by using Physically Unclonable Functions (PUF). Due to its own microscopic characteristics, the PUF can generate unpredictable and duplicate information, which can be regarded as a device fingerprint and is suitable for device authentication. Additionally, this study utilizes the commutative and invertible properties of BS-PUF to develop the key exchange of the proposed scheme and to protect user privacy. This proposed scheme overcomes the previous problems in security, has more security features, and maintains lightweight computational costs.</div></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"87 ","pages":"Article 103915"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212624002175","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Drones (IoD) means the cooperative collection and transmission of data by multiple drones in a cluster or decentralized way of working to decrease the energy consumption of mobile devices, increase overall performance, and reduce the cost of building infrastructure. It is widely applied in various fields, including environmental scouting and monitoring, emergency assistance and logistics transportation, etc. Recently, many related authentication schemes were proposed for IoD. Due to the limitation that the drones use lightweight components for development, these authentication schemes mostly use lightweight components for development. However, many authentication schemes cannot overcome security issues such as providing user privacy protection and resisting drone capture attacks. This study discusses these security issues of related schemes, and develops an authentication scheme for IoD by using Physically Unclonable Functions (PUF). Due to its own microscopic characteristics, the PUF can generate unpredictable and duplicate information, which can be regarded as a device fingerprint and is suitable for device authentication. Additionally, this study utilizes the commutative and invertible properties of BS-PUF to develop the key exchange of the proposed scheme and to protect user privacy. This proposed scheme overcomes the previous problems in security, has more security features, and maintains lightweight computational costs.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.