{"title":"Deep hashing and attention mechanism-based image retrieval of osteosarcoma scans for diagnosis of bone cancer","authors":"Taisheng Zeng , Yuguang Ye , Yusi Chen , Daxin Zhu , Yifeng Huang , Ying Huang , Yijie Chen , Jianshe Shi , Bijiao Ding , Jianlong Huang , Mengde Ling","doi":"10.1016/j.jbo.2024.100645","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Due to its intricate nature and substantial data size, microscopic image data of osteosarcoma often present a significant obstacle to the effectiveness of conventional image retrieval methods. Therefore, this study investigates a new approach for medical image retrieval using advanced deep hashing techniques and attention mechanisms to address these challenges more effectively.</div></div><div><h3>Method</h3><div>The proposed algorithm significantly improves osteosarcoma cell microscopic image retrieval efficiency and accuracy using deep hashing and attention mechanisms. Image preprocessing includes adaptive histogram equalization and dataset augmentation to enhance quality and diversity. Feature extraction employs the WRN-AM model to map high-dimensional features to a low-dimensional hash code space, improving retrieval efficiency. Finally, similarity matching via Hamming distance allows rapid and precise identification of similar images.</div></div><div><h3>Results</h3><div>The study shows notable advancements: the WRN-AM model achieves 93.2% classification accuracy and 97.09% mAP using 64-bit hash codes. These findings underscore the technique’s effective performance in extracting and categorizing diverse microscopic cell data efficiently and reliably.</div></div><div><h3>Conclusions</h3><div>This innovative approach provides a robust solution for retrieving and classifying microscopic data of osteosarcoma cells and other cell types, speeding up clinical diagnosis and medical research. It facilitates quicker access and analysis of patient image data, enhancing diagnostic precision and treatment planning for healthcare professionals. Concurrently, it supports researchers in leveraging medical image data more efficiently, fostering progress and innovation in the medical field.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":"49 ","pages":"Article 100645"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137424001258","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Due to its intricate nature and substantial data size, microscopic image data of osteosarcoma often present a significant obstacle to the effectiveness of conventional image retrieval methods. Therefore, this study investigates a new approach for medical image retrieval using advanced deep hashing techniques and attention mechanisms to address these challenges more effectively.
Method
The proposed algorithm significantly improves osteosarcoma cell microscopic image retrieval efficiency and accuracy using deep hashing and attention mechanisms. Image preprocessing includes adaptive histogram equalization and dataset augmentation to enhance quality and diversity. Feature extraction employs the WRN-AM model to map high-dimensional features to a low-dimensional hash code space, improving retrieval efficiency. Finally, similarity matching via Hamming distance allows rapid and precise identification of similar images.
Results
The study shows notable advancements: the WRN-AM model achieves 93.2% classification accuracy and 97.09% mAP using 64-bit hash codes. These findings underscore the technique’s effective performance in extracting and categorizing diverse microscopic cell data efficiently and reliably.
Conclusions
This innovative approach provides a robust solution for retrieving and classifying microscopic data of osteosarcoma cells and other cell types, speeding up clinical diagnosis and medical research. It facilitates quicker access and analysis of patient image data, enhancing diagnostic precision and treatment planning for healthcare professionals. Concurrently, it supports researchers in leveraging medical image data more efficiently, fostering progress and innovation in the medical field.
期刊介绍:
The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer.
As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject.
The areas covered by the journal include:
Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment)
Preclinical models of metastasis
Bone microenvironment in cancer (stem cell, bone cell and cancer interactions)
Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics)
Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management)
Bone imaging (clinical and animal, skeletal interventional radiology)
Bone biomarkers (clinical and translational applications)
Radiotherapy and radio-isotopes
Skeletal complications
Bone pain (mechanisms and management)
Orthopaedic cancer surgery
Primary bone tumours
Clinical guidelines
Multidisciplinary care
Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.