Jafar Sadeghi , Saeed Noori Gashti , Mohammad Reza Alipour , Mohammad Ali S. Afshar
{"title":"Weak cosmic censorship and weak gravity conjectures in CFT thermodynamics","authors":"Jafar Sadeghi , Saeed Noori Gashti , Mohammad Reza Alipour , Mohammad Ali S. Afshar","doi":"10.1016/j.jheap.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we explore the intriguing interplay between fundamental theoretical physics concepts within the context of charged black holes. Specifically, we focus on the consistency of the weak gravity conjecture (WGC) and weak cosmic censorship conjecture (WCCC) in the thermodynamics of conformal field theory (CFT), and restricted phase space thermodynamics (RPST) for AdS Reissner-Nordström black holes with a perfect fluid dark matter (RN-PFDM). The WGC ensures that gravity remains the weakest force in the system. Meanwhile, the WCCC addresses the cosmic censorship problem by preventing the violation of fundamental physical laws near the black hole singularity. First, we analyze the RN black hole's free energy in both spaces, revealing a distinctive swallowtail pattern indicative of a first-order phase transition when certain free parameter conditions are met. We explore the WGC across different phase spaces, emphasizing the need for certain conditions in extended phase space thermodynamics (EPST), RPST, and CFT. We demonstrate that PFDM parameter <em>γ</em> and the radius of AdS <em>l</em> have a vital role in proving the satisfaction of the WGC. Also, these values have a linear relation with the range compatibility of WGC. The range of compatibility for WGC in RPST and EPST is the same while for CFT, this range is larger than EPST, and RPST. It means somehow the WGC and CFT are more consistent. The WCCC was examined at the critical juncture, confirming its validity in critical points. We conclude that the WGC is supported at the critical point of black holes, and the WCCC is also maintained, demonstrating the robustness of these conjectures within the critical ranges of black hole parameters.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 482-493"},"PeriodicalIF":10.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404824001174","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we explore the intriguing interplay between fundamental theoretical physics concepts within the context of charged black holes. Specifically, we focus on the consistency of the weak gravity conjecture (WGC) and weak cosmic censorship conjecture (WCCC) in the thermodynamics of conformal field theory (CFT), and restricted phase space thermodynamics (RPST) for AdS Reissner-Nordström black holes with a perfect fluid dark matter (RN-PFDM). The WGC ensures that gravity remains the weakest force in the system. Meanwhile, the WCCC addresses the cosmic censorship problem by preventing the violation of fundamental physical laws near the black hole singularity. First, we analyze the RN black hole's free energy in both spaces, revealing a distinctive swallowtail pattern indicative of a first-order phase transition when certain free parameter conditions are met. We explore the WGC across different phase spaces, emphasizing the need for certain conditions in extended phase space thermodynamics (EPST), RPST, and CFT. We demonstrate that PFDM parameter γ and the radius of AdS l have a vital role in proving the satisfaction of the WGC. Also, these values have a linear relation with the range compatibility of WGC. The range of compatibility for WGC in RPST and EPST is the same while for CFT, this range is larger than EPST, and RPST. It means somehow the WGC and CFT are more consistent. The WCCC was examined at the critical juncture, confirming its validity in critical points. We conclude that the WGC is supported at the critical point of black holes, and the WCCC is also maintained, demonstrating the robustness of these conjectures within the critical ranges of black hole parameters.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.