Examples of tangent cones of non-collapsed Ricci limit spaces

IF 1.3 2区 数学 Q1 MATHEMATICS
Philipp Reiser
{"title":"Examples of tangent cones of non-collapsed Ricci limit spaces","authors":"Philipp Reiser","doi":"10.1016/j.na.2024.113699","DOIUrl":null,"url":null,"abstract":"<div><div>We give new examples of manifolds that appear as cross sections of tangent cones of non-collapsed Ricci limit spaces. It was shown by Colding–Naber that the homeomorphism types of the tangent cones of a fixed point of such a space do not need to be unique. In fact, they constructed an example in dimension 5 where two different homeomorphism types appear at the same point. In this note, we extend this result and construct limit spaces in all dimensions at least 5 where any finite collection of manifolds that admit <em>core metrics</em>, a type of metric introduced by Perelman and Burdick to study Riemannian metrics of positive Ricci curvature on connected sums, can appear as cross sections of tangent cones of the same point.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"252 ","pages":"Article 113699"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002189","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give new examples of manifolds that appear as cross sections of tangent cones of non-collapsed Ricci limit spaces. It was shown by Colding–Naber that the homeomorphism types of the tangent cones of a fixed point of such a space do not need to be unique. In fact, they constructed an example in dimension 5 where two different homeomorphism types appear at the same point. In this note, we extend this result and construct limit spaces in all dimensions at least 5 where any finite collection of manifolds that admit core metrics, a type of metric introduced by Perelman and Burdick to study Riemannian metrics of positive Ricci curvature on connected sums, can appear as cross sections of tangent cones of the same point.
非折叠利玛窦极限空间切锥实例
我们给出了流形的新例子,这些流形作为非塌缩利玛窦极限空间切锥的横截面出现。科尔丁-纳伯(Colding-Naber)证明,这种空间的定点切锥的同构类型不一定是唯一的。事实上,他们在维度 5 中构造了一个例子,在同一个点上出现了两种不同的同构类型。在本论文中,我们扩展了这一结果,并构建了所有维数至少为 5 的极限空间,在这些空间中,任何接纳核心度量的有限流形集合(核心度量是佩雷尔曼和伯迪克为研究连通和上的正里奇曲率黎曼度量而引入的一种度量类型)都可以作为同一点切向锥的截面出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信