Approximating the shortest path problem with scenarios

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Adam Kasperski, Paweł Zieliński
{"title":"Approximating the shortest path problem with scenarios","authors":"Adam Kasperski,&nbsp;Paweł Zieliński","doi":"10.1016/j.tcs.2024.114972","DOIUrl":null,"url":null,"abstract":"<div><div>This paper discusses the shortest path problem in a general directed graph with <em>n</em> nodes and <em>K</em> cost scenarios (objectives). In order to choose a solution, the min-max criterion is applied. The min-max version of the problem is hard to approximate within <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>ϵ</mi></mrow></msup><mo>⁡</mo><mi>K</mi><mo>)</mo></math></span> for any <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span> unless NP<!--> <span><math><mo>⊆</mo><mtext>DTIME</mtext><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mtext>polylog</mtext><mspace></mspace><mi>n</mi></mrow></msup><mo>)</mo></math></span> even for arc series-parallel graphs and within <span><math><mi>Ω</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> unless NP<!--> <span><math><mo>⊆</mo><mtext>ZPTIME</mtext><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msup><mo>)</mo></math></span> for acyclic graphs. The best approximation algorithm for the min-max shortest path problem in general graphs, known to date, has an approximation ratio of <em>K</em>. In this paper, an <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>)</mo></math></span> flow LP-based approximation algorithm for min-max shortest path in general graphs is constructed. It is also shown that the approximation ratio obtained is close to an integrality gap of the corresponding flow LP relaxation.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1025 ","pages":"Article 114972"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005899","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses the shortest path problem in a general directed graph with n nodes and K cost scenarios (objectives). In order to choose a solution, the min-max criterion is applied. The min-max version of the problem is hard to approximate within Ω(log1ϵK) for any ϵ>0 unless NP DTIME(npolylogn) even for arc series-parallel graphs and within Ω(logn/loglogn) unless NP ZPTIME(nloglogn) for acyclic graphs. The best approximation algorithm for the min-max shortest path problem in general graphs, known to date, has an approximation ratio of K. In this paper, an O˜(n) flow LP-based approximation algorithm for min-max shortest path in general graphs is constructed. It is also shown that the approximation ratio obtained is close to an integrality gap of the corresponding flow LP relaxation.
用场景近似最短路径问题
本文讨论的是一般有向图中的最短路径问题,该图有 n 个节点和 K 个成本方案(目标)。为了选择一个解,采用了最小-最大准则。对于任意ϵ>0,除非 NP ⊆DTIME(npolylogn),否则即使对于弧序列平行图,最小-最大版本的问题也很难在Ω(log1-ϵK)内逼近;对于非循环图,除非 NP ⊆ZPTIME(nloglogn),否则也很难在Ω(logn/loglogn)内逼近。本文构建了基于 O˜(n)流 LP 的一般图中最小最短路径的近似算法。研究还表明,所获得的近似率接近于相应流 LP 松弛的积分差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信