The trust region filter strategy: Survey of a rigorous approach for optimization with surrogate models

IF 3 Q2 ENGINEERING, CHEMICAL
Lorenz T. Biegler
{"title":"The trust region filter strategy: Survey of a rigorous approach for optimization with surrogate models","authors":"Lorenz T. Biegler","doi":"10.1016/j.dche.2024.100197","DOIUrl":null,"url":null,"abstract":"<div><div>Recent developments in efficient, large-scale nonlinear optimization strategies have had significants impact on the design and operation of engineering systems with equation-oriented (EO) models. On the other hand, rigorous first-principle procedural (i.e., black-box ’truth’) models may be difficult to incorporate directly within this optimization framework. Instead, black-box models are often substituted by lower fidelity surrogate models that may compromise the optimal solution. To overcome these challenges, Trust Region Filter (TRF) methods have been developed, which combine surrogate models optimization with intermittent sampling of truth models. The TRF approach combines efficient solution strategies with minimal recourse to truth models, and leads to guaranteed convergence to the truth model optimum. This survey paper provides a perspective on the conceptual development and evolution of the TRF method along with a review of applications that demonstrate the effectiveness of the TRF approach. In particular, three cases studies are presented on flowsheet optimization with embedded CFD models for advanced power plants and CO2 capture processes, as well as synthesis of heat exchanger networks with detailed finite-element equipment models.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"13 ","pages":"Article 100197"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508124000590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent developments in efficient, large-scale nonlinear optimization strategies have had significants impact on the design and operation of engineering systems with equation-oriented (EO) models. On the other hand, rigorous first-principle procedural (i.e., black-box ’truth’) models may be difficult to incorporate directly within this optimization framework. Instead, black-box models are often substituted by lower fidelity surrogate models that may compromise the optimal solution. To overcome these challenges, Trust Region Filter (TRF) methods have been developed, which combine surrogate models optimization with intermittent sampling of truth models. The TRF approach combines efficient solution strategies with minimal recourse to truth models, and leads to guaranteed convergence to the truth model optimum. This survey paper provides a perspective on the conceptual development and evolution of the TRF method along with a review of applications that demonstrate the effectiveness of the TRF approach. In particular, three cases studies are presented on flowsheet optimization with embedded CFD models for advanced power plants and CO2 capture processes, as well as synthesis of heat exchanger networks with detailed finite-element equipment models.
信任区域过滤策略:使用代用模型进行优化的严格方法概览
高效、大规模非线性优化策略的最新发展,对采用方程导向(EO)模型的工程系统的设计和运行产生了重大影响。另一方面,严格的第一原理程序(即黑盒 "真理")模型可能难以直接纳入这种优化框架。相反,黑盒模型通常会被保真度较低的代用模型所替代,而代用模型可能会影响最优解。为了克服这些挑战,人们开发了信任区域滤波器(TRF)方法,该方法将代理模型优化与真实模型间歇采样相结合。TRF 方法结合了高效的求解策略和对真实模型的最小求助,并能保证收敛到真实模型的最优值。本调查报告从概念发展和 TRF 方法演变的角度,对证明 TRF 方法有效性的应用进行了综述。本文特别介绍了三个案例研究,分别涉及先进发电厂和二氧化碳捕集过程的嵌入式 CFD 模型流场优化,以及使用详细的有限元设备模型合成热交换器网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信